Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313289912> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2313289912 endingPage "2358" @default.
- W2313289912 startingPage "2352" @default.
- W2313289912 abstract "Abstract Motivation: Accurate segmentation of brain electron microscopy (EM) images is a critical step in dense circuit reconstruction. Although deep neural networks (DNNs) have been widely used in a number of applications in computer vision, most of these models that proved to be effective on image classification tasks cannot be applied directly to EM image segmentation, due to the different objectives of these tasks. As a result, it is desirable to develop an optimized architecture that uses the full power of DNNs and tailored specifically for EM image segmentation. Results: In this work, we proposed a novel design of DNNs for this task. We trained a pixel classifier that operates on raw pixel intensities with no preprocessing to generate probability values for each pixel being a membrane or not. Although the use of neural networks in image segmentation is not completely new, we developed novel insights and model architectures that allow us to achieve superior performance on EM image segmentation tasks. Our submission based on these insights to the 2D EM Image Segmentation Challenge achieved the best performance consistently across all the three evaluation metrics. This challenge is still ongoing and the results in this paper are as of June 5, 2015. Availability and Implementation: https://github.com/ahmed-fakhry/dive Contact: sji@eecs.wsu.edu" @default.
- W2313289912 created "2016-06-24" @default.
- W2313289912 creator A5036224886 @default.
- W2313289912 creator A5046956268 @default.
- W2313289912 creator A5052278550 @default.
- W2313289912 date "2016-03-25" @default.
- W2313289912 modified "2023-10-16" @default.
- W2313289912 title "Deep models for brain EM image segmentation: novel insights and improved performance" @default.
- W2313289912 cites W1508135620 @default.
- W2313289912 cites W1898703532 @default.
- W2313289912 cites W1969013163 @default.
- W2313289912 cites W1977691361 @default.
- W2313289912 cites W1983364832 @default.
- W2313289912 cites W2018227909 @default.
- W2313289912 cites W2040156859 @default.
- W2313289912 cites W2082526668 @default.
- W2313289912 cites W2121289914 @default.
- W2313289912 cites W2147800946 @default.
- W2313289912 cites W2169805405 @default.
- W2313289912 cites W2911964244 @default.
- W2313289912 cites W4255949318 @default.
- W2313289912 doi "https://doi.org/10.1093/bioinformatics/btw165" @default.
- W2313289912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27153603" @default.
- W2313289912 hasPublicationYear "2016" @default.
- W2313289912 type Work @default.
- W2313289912 sameAs 2313289912 @default.
- W2313289912 citedByCount "44" @default.
- W2313289912 countsByYear W23132899122017 @default.
- W2313289912 countsByYear W23132899122018 @default.
- W2313289912 countsByYear W23132899122019 @default.
- W2313289912 countsByYear W23132899122020 @default.
- W2313289912 countsByYear W23132899122021 @default.
- W2313289912 countsByYear W23132899122022 @default.
- W2313289912 countsByYear W23132899122023 @default.
- W2313289912 crossrefType "journal-article" @default.
- W2313289912 hasAuthorship W2313289912A5036224886 @default.
- W2313289912 hasAuthorship W2313289912A5046956268 @default.
- W2313289912 hasAuthorship W2313289912A5052278550 @default.
- W2313289912 hasBestOaLocation W23132899121 @default.
- W2313289912 hasConcept C108583219 @default.
- W2313289912 hasConcept C124504099 @default.
- W2313289912 hasConcept C153180895 @default.
- W2313289912 hasConcept C154945302 @default.
- W2313289912 hasConcept C160633673 @default.
- W2313289912 hasConcept C25694479 @default.
- W2313289912 hasConcept C2984842247 @default.
- W2313289912 hasConcept C31972630 @default.
- W2313289912 hasConcept C34736171 @default.
- W2313289912 hasConcept C41008148 @default.
- W2313289912 hasConcept C50644808 @default.
- W2313289912 hasConcept C65885262 @default.
- W2313289912 hasConcept C89600930 @default.
- W2313289912 hasConcept C95623464 @default.
- W2313289912 hasConceptScore W2313289912C108583219 @default.
- W2313289912 hasConceptScore W2313289912C124504099 @default.
- W2313289912 hasConceptScore W2313289912C153180895 @default.
- W2313289912 hasConceptScore W2313289912C154945302 @default.
- W2313289912 hasConceptScore W2313289912C160633673 @default.
- W2313289912 hasConceptScore W2313289912C25694479 @default.
- W2313289912 hasConceptScore W2313289912C2984842247 @default.
- W2313289912 hasConceptScore W2313289912C31972630 @default.
- W2313289912 hasConceptScore W2313289912C34736171 @default.
- W2313289912 hasConceptScore W2313289912C41008148 @default.
- W2313289912 hasConceptScore W2313289912C50644808 @default.
- W2313289912 hasConceptScore W2313289912C65885262 @default.
- W2313289912 hasConceptScore W2313289912C89600930 @default.
- W2313289912 hasConceptScore W2313289912C95623464 @default.
- W2313289912 hasIssue "15" @default.
- W2313289912 hasLocation W23132899121 @default.
- W2313289912 hasLocation W23132899122 @default.
- W2313289912 hasLocation W23132899123 @default.
- W2313289912 hasOpenAccess W2313289912 @default.
- W2313289912 hasPrimaryLocation W23132899121 @default.
- W2313289912 hasRelatedWork W1999008862 @default.
- W2313289912 hasRelatedWork W2103507220 @default.
- W2313289912 hasRelatedWork W2185902295 @default.
- W2313289912 hasRelatedWork W2371519352 @default.
- W2313289912 hasRelatedWork W2386644571 @default.
- W2313289912 hasRelatedWork W2551987074 @default.
- W2313289912 hasRelatedWork W2785294226 @default.
- W2313289912 hasRelatedWork W2945274617 @default.
- W2313289912 hasRelatedWork W3144569342 @default.
- W2313289912 hasRelatedWork W4205800335 @default.
- W2313289912 hasVolume "32" @default.
- W2313289912 isParatext "false" @default.
- W2313289912 isRetracted "false" @default.
- W2313289912 magId "2313289912" @default.
- W2313289912 workType "article" @default.