Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313298850> ?p ?o ?g. }
- W2313298850 endingPage "2766" @default.
- W2313298850 startingPage "2757" @default.
- W2313298850 abstract "Aqueous solubility is a very important physical property of small molecule drugs and drug candidates but also one of the most difficult to predict accurately. Aqueous solubility plays a major role in drug delivery and pharmacokinetics. It is believed that crystal lattice interactions are important in solubility and that including them in solubility models should improve the accuracy of the models. We used calculated values for lattice energy and sublimation enthalpy of organic molecules as descriptors to determine whether these would improve the accuracy of the aqueous solubility models. Multiple linear regression employing an expectation maximization algorithm and a sparse prior (MLREM) method and a nonlinear Bayesian regularized artificial neural network with a Laplacian prior (BRANNLP) were used to derive optimal predictive models of aqueous solubility of a large and highly diverse data set of 4558 organic compounds over a normal ambient temperature range of 20–30 °C (293–303 K). A randomly selected test set and compounds from a solubility challenge were used to estimate the predictive ability of the models. The BRANNLP method showed the best statistical results with squared correlation coefficients of 0.90 and standard errors of 0.645–0.665 log(S) for training and test sets. Surprisingly, including descriptors that captured crystal lattice interactions did not significantly improve the quality of these aqueous solubility models." @default.
- W2313298850 created "2016-06-24" @default.
- W2313298850 creator A5004908996 @default.
- W2313298850 creator A5054686543 @default.
- W2313298850 creator A5076173216 @default.
- W2313298850 date "2013-06-13" @default.
- W2313298850 modified "2023-10-16" @default.
- W2313298850 title "Aqueous Solubility Prediction: Do Crystal Lattice Interactions Help?" @default.
- W2313298850 cites W1968688544 @default.
- W2313298850 cites W1968808447 @default.
- W2313298850 cites W1969747177 @default.
- W2313298850 cites W1973343374 @default.
- W2313298850 cites W1976687538 @default.
- W2313298850 cites W1978744367 @default.
- W2313298850 cites W1992229282 @default.
- W2313298850 cites W1992428162 @default.
- W2313298850 cites W1994317916 @default.
- W2313298850 cites W1995892465 @default.
- W2313298850 cites W2000079274 @default.
- W2313298850 cites W2005055640 @default.
- W2313298850 cites W2009307057 @default.
- W2313298850 cites W2009638172 @default.
- W2313298850 cites W2020602991 @default.
- W2313298850 cites W2024395473 @default.
- W2313298850 cites W2030608815 @default.
- W2313298850 cites W2031879376 @default.
- W2313298850 cites W2042107474 @default.
- W2313298850 cites W2044218064 @default.
- W2313298850 cites W2045317384 @default.
- W2313298850 cites W2046653925 @default.
- W2313298850 cites W2047161363 @default.
- W2313298850 cites W2047909810 @default.
- W2313298850 cites W2052260244 @default.
- W2313298850 cites W2054224099 @default.
- W2313298850 cites W2055604901 @default.
- W2313298850 cites W2061481072 @default.
- W2313298850 cites W2064261489 @default.
- W2313298850 cites W2064558760 @default.
- W2313298850 cites W2066363885 @default.
- W2313298850 cites W2066874075 @default.
- W2313298850 cites W2069892058 @default.
- W2313298850 cites W2076498053 @default.
- W2313298850 cites W2076630051 @default.
- W2313298850 cites W2081649582 @default.
- W2313298850 cites W2082093640 @default.
- W2313298850 cites W2088090567 @default.
- W2313298850 cites W2089996801 @default.
- W2313298850 cites W2090240212 @default.
- W2313298850 cites W2091339578 @default.
- W2313298850 cites W2091454857 @default.
- W2313298850 cites W2099014892 @default.
- W2313298850 cites W2101212670 @default.
- W2313298850 cites W2106874974 @default.
- W2313298850 cites W2132450507 @default.
- W2313298850 cites W2135732933 @default.
- W2313298850 cites W2144877918 @default.
- W2313298850 cites W2146060259 @default.
- W2313298850 cites W2157342932 @default.
- W2313298850 cites W2157970175 @default.
- W2313298850 cites W2161940826 @default.
- W2313298850 cites W2166008508 @default.
- W2313298850 cites W2171327090 @default.
- W2313298850 cites W2206358785 @default.
- W2313298850 cites W2315837940 @default.
- W2313298850 cites W2318099008 @default.
- W2313298850 cites W2329549217 @default.
- W2313298850 doi "https://doi.org/10.1021/mp4001958" @default.
- W2313298850 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23718811" @default.
- W2313298850 hasPublicationYear "2013" @default.
- W2313298850 type Work @default.
- W2313298850 sameAs 2313298850 @default.
- W2313298850 citedByCount "57" @default.
- W2313298850 countsByYear W23132988502014 @default.
- W2313298850 countsByYear W23132988502015 @default.
- W2313298850 countsByYear W23132988502016 @default.
- W2313298850 countsByYear W23132988502017 @default.
- W2313298850 countsByYear W23132988502018 @default.
- W2313298850 countsByYear W23132988502019 @default.
- W2313298850 countsByYear W23132988502020 @default.
- W2313298850 countsByYear W23132988502021 @default.
- W2313298850 countsByYear W23132988502022 @default.
- W2313298850 countsByYear W23132988502023 @default.
- W2313298850 crossrefType "journal-article" @default.
- W2313298850 hasAuthorship W2313298850A5004908996 @default.
- W2313298850 hasAuthorship W2313298850A5054686543 @default.
- W2313298850 hasAuthorship W2313298850A5076173216 @default.
- W2313298850 hasConcept C115624301 @default.
- W2313298850 hasConcept C121332964 @default.
- W2313298850 hasConcept C131468747 @default.
- W2313298850 hasConcept C147597530 @default.
- W2313298850 hasConcept C154945302 @default.
- W2313298850 hasConcept C155574463 @default.
- W2313298850 hasConcept C15744967 @default.
- W2313298850 hasConcept C169903167 @default.
- W2313298850 hasConcept C178790620 @default.
- W2313298850 hasConcept C184651966 @default.
- W2313298850 hasConcept C185592680 @default.
- W2313298850 hasConcept C186060115 @default.