Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313375051> ?p ?o ?g. }
- W2313375051 endingPage "20130146" @default.
- W2313375051 startingPage "20130146" @default.
- W2313375051 abstract "This study presents artificial neural network (ANN) models to estimate the specific surface area of fine-grained soils as an alternative to sophisticated laboratory procedures. Geotechnical properties of 206 soils were measured experimentally based on ASTM standards. Soil input parameters used in database development were particle size at 10 %, 30 %, and 60 % finer, coefficient of curvature, coefficient of uniformity, percentage of silts and clays, percentage of soil passing sieve No. 200, fineness modulus, liquid limit, plastic limit, plasticity index, and activity. This data was used to train, test, and develop ANN models based on the backpropagation algorithm. Performance of ANN estimation was reliable when comparing the predictions with target outputs. Results indicated that the suggested ANN models exhibited excellent fit of the data as measured by the coefficient of determination and mean-square-error values. Thus, the developed ANN models could be used as a simple prediction tool to estimate soil-specific surface area reliably and efficiently as a rapid inexpensive substitute for cumbersome laboratory techniques." @default.
- W2313375051 created "2016-06-24" @default.
- W2313375051 creator A5071347862 @default.
- W2313375051 creator A5087979918 @default.
- W2313375051 date "2014-05-23" @default.
- W2313375051 modified "2023-09-23" @default.
- W2313375051 title "Modeling Soil Specific Surface Area with Artificial Neural Networks" @default.
- W2313375051 cites W132772496 @default.
- W2313375051 cites W1498436455 @default.
- W2313375051 cites W1538029543 @default.
- W2313375051 cites W1968920602 @default.
- W2313375051 cites W1970875057 @default.
- W2313375051 cites W1974058662 @default.
- W2313375051 cites W1978820282 @default.
- W2313375051 cites W1985579839 @default.
- W2313375051 cites W1986803739 @default.
- W2313375051 cites W2010139395 @default.
- W2313375051 cites W2011254969 @default.
- W2313375051 cites W2015754634 @default.
- W2313375051 cites W2022632742 @default.
- W2313375051 cites W2029056188 @default.
- W2313375051 cites W2036148140 @default.
- W2313375051 cites W2037328743 @default.
- W2313375051 cites W2038555613 @default.
- W2313375051 cites W2066096349 @default.
- W2313375051 cites W2067130442 @default.
- W2313375051 cites W2068046269 @default.
- W2313375051 cites W2068957675 @default.
- W2313375051 cites W2070495154 @default.
- W2313375051 cites W2073949043 @default.
- W2313375051 cites W2076165558 @default.
- W2313375051 cites W2076589917 @default.
- W2313375051 cites W2077458446 @default.
- W2313375051 cites W2081482514 @default.
- W2313375051 cites W2094226905 @default.
- W2313375051 cites W2096946413 @default.
- W2313375051 cites W2100279529 @default.
- W2313375051 cites W2137983211 @default.
- W2313375051 cites W2147265223 @default.
- W2313375051 cites W2171331721 @default.
- W2313375051 doi "https://doi.org/10.1520/gtj20130146" @default.
- W2313375051 hasPublicationYear "2014" @default.
- W2313375051 type Work @default.
- W2313375051 sameAs 2313375051 @default.
- W2313375051 citedByCount "5" @default.
- W2313375051 countsByYear W23133750512015 @default.
- W2313375051 countsByYear W23133750512018 @default.
- W2313375051 countsByYear W23133750512019 @default.
- W2313375051 countsByYear W23133750512022 @default.
- W2313375051 countsByYear W23133750512023 @default.
- W2313375051 crossrefType "journal-article" @default.
- W2313375051 hasAuthorship W2313375051A5071347862 @default.
- W2313375051 hasAuthorship W2313375051A5087979918 @default.
- W2313375051 hasConcept C105795698 @default.
- W2313375051 hasConcept C114614502 @default.
- W2313375051 hasConcept C116973930 @default.
- W2313375051 hasConcept C119857082 @default.
- W2313375051 hasConcept C127413603 @default.
- W2313375051 hasConcept C128990827 @default.
- W2313375051 hasConcept C139945424 @default.
- W2313375051 hasConcept C155032097 @default.
- W2313375051 hasConcept C159390177 @default.
- W2313375051 hasConcept C159750122 @default.
- W2313375051 hasConcept C17732976 @default.
- W2313375051 hasConcept C187320778 @default.
- W2313375051 hasConcept C2780092901 @default.
- W2313375051 hasConcept C33923547 @default.
- W2313375051 hasConcept C39432304 @default.
- W2313375051 hasConcept C41008148 @default.
- W2313375051 hasConcept C50516716 @default.
- W2313375051 hasConcept C50644808 @default.
- W2313375051 hasConceptScore W2313375051C105795698 @default.
- W2313375051 hasConceptScore W2313375051C114614502 @default.
- W2313375051 hasConceptScore W2313375051C116973930 @default.
- W2313375051 hasConceptScore W2313375051C119857082 @default.
- W2313375051 hasConceptScore W2313375051C127413603 @default.
- W2313375051 hasConceptScore W2313375051C128990827 @default.
- W2313375051 hasConceptScore W2313375051C139945424 @default.
- W2313375051 hasConceptScore W2313375051C155032097 @default.
- W2313375051 hasConceptScore W2313375051C159390177 @default.
- W2313375051 hasConceptScore W2313375051C159750122 @default.
- W2313375051 hasConceptScore W2313375051C17732976 @default.
- W2313375051 hasConceptScore W2313375051C187320778 @default.
- W2313375051 hasConceptScore W2313375051C2780092901 @default.
- W2313375051 hasConceptScore W2313375051C33923547 @default.
- W2313375051 hasConceptScore W2313375051C39432304 @default.
- W2313375051 hasConceptScore W2313375051C41008148 @default.
- W2313375051 hasConceptScore W2313375051C50516716 @default.
- W2313375051 hasConceptScore W2313375051C50644808 @default.
- W2313375051 hasIssue "4" @default.
- W2313375051 hasLocation W23133750511 @default.
- W2313375051 hasOpenAccess W2313375051 @default.
- W2313375051 hasPrimaryLocation W23133750511 @default.
- W2313375051 hasRelatedWork W2031900686 @default.
- W2313375051 hasRelatedWork W2334717973 @default.
- W2313375051 hasRelatedWork W241785900 @default.
- W2313375051 hasRelatedWork W2894416233 @default.
- W2313375051 hasRelatedWork W2964084039 @default.