Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313402050> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2313402050 endingPage "5418" @default.
- W2313402050 startingPage "5407" @default.
- W2313402050 abstract "In intensive and large-scale farming, piggery environmental monitoring is an important method for improving productivity and preventing disease in pig herds. The piggery environment mainly includes air temperature, air humidity, and ammonia concentration. Piggery environmental monitoring mostly concentrates on a single environmental factor and data processing. Few studies focus on multiple environmental factors and information fusion from a variety of monitoring sensors. Therefore, in this paper, the main environmental factors that affect herd health, such as temperature, humidity, and ammonia concentration, were monitored. According to the analysis of piggery environmental adaptability indicators, a multi-sensor data fusion model with five layers based on the adaptive fuzzy neural network of T-S inference was established. The structure of the model is 3-8-18-18-1. To check the performance of the model, 432 groups of data were selected by monitoring a piggery environment for three consecutive days. A total of 288 sets of data were obtained for training, and 144 sets of data were obtained for checking. The result shows that the model effectively fuses multi-sensor data. After 600 training cycles, a Root Mean Squared Error (RMSE) of 0:14 10 −3 between the actual output of the system and the desired output can be achieved. The system output has high accuracy. The RMSE of the checking data and fuzzy system output is 0:18 10 −2 . Moreover, the operation efficiency of the system is high. Thus, the system is suitable for analyzing data in real time and for the processing of piggery environments. This system provides a good data processing method for monitoring and controlling piggery environments." @default.
- W2313402050 created "2016-06-24" @default.
- W2313402050 creator A5005247857 @default.
- W2313402050 creator A5026668246 @default.
- W2313402050 creator A5038255472 @default.
- W2313402050 creator A5039469534 @default.
- W2313402050 creator A5081521209 @default.
- W2313402050 date "2014-10-10" @default.
- W2313402050 modified "2023-09-26" @default.
- W2313402050 title "Multi-sensor Data Fusion Based on Fuzzy Neural Network and Its Application in Piggery Environmental Control Strategies" @default.
- W2313402050 cites W2005083887 @default.
- W2313402050 cites W2031777011 @default.
- W2313402050 cites W2045614967 @default.
- W2313402050 cites W2054067333 @default.
- W2313402050 cites W2070612399 @default.
- W2313402050 cites W2077686915 @default.
- W2313402050 cites W2083130827 @default.
- W2313402050 cites W2084054965 @default.
- W2313402050 cites W2103271443 @default.
- W2313402050 cites W2140954817 @default.
- W2313402050 cites W2357157478 @default.
- W2313402050 cites W2392100369 @default.
- W2313402050 cites W2596100100 @default.
- W2313402050 cites W2912565176 @default.
- W2313402050 cites W2487493985 @default.
- W2313402050 doi "https://doi.org/10.12733/jics20104770" @default.
- W2313402050 hasPublicationYear "2014" @default.
- W2313402050 type Work @default.
- W2313402050 sameAs 2313402050 @default.
- W2313402050 citedByCount "2" @default.
- W2313402050 countsByYear W23134020502016 @default.
- W2313402050 countsByYear W23134020502023 @default.
- W2313402050 crossrefType "journal-article" @default.
- W2313402050 hasAuthorship W2313402050A5005247857 @default.
- W2313402050 hasAuthorship W2313402050A5026668246 @default.
- W2313402050 hasAuthorship W2313402050A5038255472 @default.
- W2313402050 hasAuthorship W2313402050A5039469534 @default.
- W2313402050 hasAuthorship W2313402050A5081521209 @default.
- W2313402050 hasConcept C124101348 @default.
- W2313402050 hasConcept C138885662 @default.
- W2313402050 hasConcept C154945302 @default.
- W2313402050 hasConcept C158525013 @default.
- W2313402050 hasConcept C2775924081 @default.
- W2313402050 hasConcept C33954974 @default.
- W2313402050 hasConcept C41008148 @default.
- W2313402050 hasConcept C41895202 @default.
- W2313402050 hasConcept C50644808 @default.
- W2313402050 hasConcept C58166 @default.
- W2313402050 hasConceptScore W2313402050C124101348 @default.
- W2313402050 hasConceptScore W2313402050C138885662 @default.
- W2313402050 hasConceptScore W2313402050C154945302 @default.
- W2313402050 hasConceptScore W2313402050C158525013 @default.
- W2313402050 hasConceptScore W2313402050C2775924081 @default.
- W2313402050 hasConceptScore W2313402050C33954974 @default.
- W2313402050 hasConceptScore W2313402050C41008148 @default.
- W2313402050 hasConceptScore W2313402050C41895202 @default.
- W2313402050 hasConceptScore W2313402050C50644808 @default.
- W2313402050 hasConceptScore W2313402050C58166 @default.
- W2313402050 hasIssue "15" @default.
- W2313402050 hasLocation W23134020501 @default.
- W2313402050 hasOpenAccess W2313402050 @default.
- W2313402050 hasPrimaryLocation W23134020501 @default.
- W2313402050 hasRelatedWork W13685908 @default.
- W2313402050 hasRelatedWork W2072757876 @default.
- W2313402050 hasRelatedWork W2366821764 @default.
- W2313402050 hasRelatedWork W2370307849 @default.
- W2313402050 hasRelatedWork W2379026336 @default.
- W2313402050 hasRelatedWork W2386387936 @default.
- W2313402050 hasRelatedWork W3200288307 @default.
- W2313402050 hasRelatedWork W3214791684 @default.
- W2313402050 hasRelatedWork W4230642524 @default.
- W2313402050 hasRelatedWork W2132659060 @default.
- W2313402050 hasVolume "11" @default.
- W2313402050 isParatext "false" @default.
- W2313402050 isRetracted "false" @default.
- W2313402050 magId "2313402050" @default.
- W2313402050 workType "article" @default.