Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313463388> ?p ?o ?g. }
- W2313463388 abstract "The Jacobian of deformation at a material point can be decomposed into the stretch tensor and the rotation tensor. Thus, varying Jacobians of deformation at the neighboring material points in the deforming volume of solid continua would yield varying stretch and rotation tensors at the material points. Measures of strain, such as Green’s strain, at a material point are purely a function of the stretch tensor, i.e. the rotation tensor plays no role in these measures. Alternatively, we could also consider decomposition of displacement gradient tensor into symmetric and skew symmetric tensors. Skew symmetric tensor is also a measure of pure rotations whereas symmetric tensor is a measure of strains, i.e. stretches. The measures of rotations in these two approaches describe the same physics but are in different forms. Polar decomposition gives the rotation matrix and not the rotation angles whereas the skew symmetric part of the displacement gradient tensor yields rotation angles that are explicitly and conveniently defined in terms of the displacement gradients. The varying rotations and rotation rates arise in all deforming solid continua due to varying deformation of the continua at neighboring material points, hence are internal to the volume of solid continua and are explicitly defined by the deformation, therefore do not require additional degrees of freedom to define them. If the internal varying rotations and their rates are resisted by the continua, then there must exist internal moments corresponding to these. The internal rotations and their rates and the corresponding moments can result in additional energy storage and dissipation. This physics is all internal to the deforming continua (hence does not require consideration of additional external degrees of freedom and associated external moments) and is neglected in the presently used continuum theories for isotropic, homogeneous solid continua. The continuum theory presented in this paper considers internal varying rotations and associated conjugate moments in the derivation of the conservation and balance laws, thus the theory presented in this paper is “a polar theory for solid continua” but is different than the micropolar theories published currently in which material points have six external degrees of freedom i.e. rotations are additional external degrees of freedom. This polar continuum theory only accounts for internal rotations and associated moments that exist as a consequence of deformation but are neglected in the present theories. We call this theory “a polar continuum theory” as it considers rotations and moments as conjugate pairs in a deforming solid continua though these are internal, hence are purely related to the deformation of the solid. It is shown that the polar continuum theory presented in this paper is not the same as the strain gradient theories reported in the literature. The differences are obviously in terms of the physics described by them and the mathematical details associated with conservation and balance laws. In this paper, we only consider polar continuum theory for small deformation and small strain. This polar continuum theory presented here is a more complete thermodynamic framework as it accounts for additional physics of internally varying rotations that is neglected in the currently used thermodynamic framework. This thermodynamic framework is suitable for isotropic, homogeneous solid matter such as thermoelastic and thermoviscoelastic solid continua with and without memory when the deformation is small. The paper also presents preliminary material helpful in consideration of the constitutive theories for polar continua." @default.
- W2313463388 created "2016-06-24" @default.
- W2313463388 creator A5016498640 @default.
- W2313463388 date "2015-06-01" @default.
- W2313463388 modified "2023-09-26" @default.
- W2313463388 title "A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR SOLID CONTINUA" @default.
- W2313463388 cites W1967293378 @default.
- W2313463388 cites W1970616553 @default.
- W2313463388 cites W1973558132 @default.
- W2313463388 cites W1976381946 @default.
- W2313463388 cites W1977322591 @default.
- W2313463388 cites W1977853658 @default.
- W2313463388 cites W1978145689 @default.
- W2313463388 cites W1987184235 @default.
- W2313463388 cites W1988234952 @default.
- W2313463388 cites W1997063453 @default.
- W2313463388 cites W1998494366 @default.
- W2313463388 cites W2000103251 @default.
- W2313463388 cites W2005548499 @default.
- W2313463388 cites W2011751773 @default.
- W2313463388 cites W2017613374 @default.
- W2313463388 cites W2020813802 @default.
- W2313463388 cites W2021884780 @default.
- W2313463388 cites W2023338094 @default.
- W2313463388 cites W2031409069 @default.
- W2313463388 cites W2035016509 @default.
- W2313463388 cites W2035121877 @default.
- W2313463388 cites W2044548483 @default.
- W2313463388 cites W2048698850 @default.
- W2313463388 cites W2052710166 @default.
- W2313463388 cites W2059668248 @default.
- W2313463388 cites W2062322916 @default.
- W2313463388 cites W2062576894 @default.
- W2313463388 cites W2062885352 @default.
- W2313463388 cites W2064146159 @default.
- W2313463388 cites W2066715180 @default.
- W2313463388 cites W2066754252 @default.
- W2313463388 cites W2068311683 @default.
- W2313463388 cites W2068554876 @default.
- W2313463388 cites W2069628171 @default.
- W2313463388 cites W2070792237 @default.
- W2313463388 cites W2074983168 @default.
- W2313463388 cites W2079966783 @default.
- W2313463388 cites W2080146669 @default.
- W2313463388 cites W2082845438 @default.
- W2313463388 cites W2087199538 @default.
- W2313463388 cites W2092541760 @default.
- W2313463388 cites W2119911434 @default.
- W2313463388 cites W2120298310 @default.
- W2313463388 cites W2122323682 @default.
- W2313463388 cites W2125443146 @default.
- W2313463388 cites W2138425920 @default.
- W2313463388 cites W2162818592 @default.
- W2313463388 cites W2171904197 @default.
- W2313463388 cites W2198032412 @default.
- W2313463388 cites W2223563781 @default.
- W2313463388 cites W2477625016 @default.
- W2313463388 cites W2889340189 @default.
- W2313463388 cites W292704240 @default.
- W2313463388 cites W561753198 @default.
- W2313463388 cites W603861354 @default.
- W2313463388 cites W72239827 @default.
- W2313463388 cites W809287126 @default.
- W2313463388 cites W97123318 @default.
- W2313463388 cites W3030272700 @default.
- W2313463388 doi "https://doi.org/10.18186/jte.17430" @default.
- W2313463388 hasPublicationYear "2015" @default.
- W2313463388 type Work @default.
- W2313463388 sameAs 2313463388 @default.
- W2313463388 citedByCount "5" @default.
- W2313463388 countsByYear W23134633882017 @default.
- W2313463388 countsByYear W23134633882018 @default.
- W2313463388 countsByYear W23134633882020 @default.
- W2313463388 crossrefType "journal-article" @default.
- W2313463388 hasAuthorship W2313463388A5016498640 @default.
- W2313463388 hasBestOaLocation W23134633881 @default.
- W2313463388 hasConcept C121332964 @default.
- W2313463388 hasConcept C134306372 @default.
- W2313463388 hasConcept C135628077 @default.
- W2313463388 hasConcept C148125525 @default.
- W2313463388 hasConcept C153294291 @default.
- W2313463388 hasConcept C155281189 @default.
- W2313463388 hasConcept C163892269 @default.
- W2313463388 hasConcept C166077713 @default.
- W2313463388 hasConcept C204366326 @default.
- W2313463388 hasConcept C2524010 @default.
- W2313463388 hasConcept C2780009758 @default.
- W2313463388 hasConcept C33923547 @default.
- W2313463388 hasConcept C41008148 @default.
- W2313463388 hasConcept C44280652 @default.
- W2313463388 hasConcept C520416788 @default.
- W2313463388 hasConcept C62520636 @default.
- W2313463388 hasConcept C64835786 @default.
- W2313463388 hasConcept C74050887 @default.
- W2313463388 hasConcept C74650414 @default.
- W2313463388 hasConcept C77088390 @default.
- W2313463388 hasConcept C85523063 @default.
- W2313463388 hasConcept C88977231 @default.
- W2313463388 hasConcept C97355855 @default.
- W2313463388 hasConceptScore W2313463388C121332964 @default.