Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313564936> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2313564936 abstract "In this paper, a three-dimensional flow solver (BGK-NS3D), which is based on the gaskinetic Bhatnagar-Gross-Krook (BGK) method, is developed and applied to the aerodynamic and aeroelastic computation of the ballute system for the flow range from continuum flow to transition flow regime. Followed the method developed by Dr. Xu [1], the BGK equation is solved with the finite-volume method, the flux at the cell interface is constructed with Van Leer's MUSCL method [2], and the non-equilibrium state is computed with the Chapman-Enskog expansion. The flux is derived by the moment of the gas distribution function. The steady solution is computed with the time marching method with either explicit or implicit algorithm. In order to compute the unsteady and aeroelastic cases, the dual-time method is implemented. Finally the BGK-NS3D solver is applied for the steady solution of modeled-ballute configuration. The steady solution is compared with experimental results. Furthermore, the BGK-NS3D solver is coupled with nonlinear computational structural solver DYNA3D, the static aeroelastic computational results are discussed. I. Introduction NE of NASA's new space programs is directed towards the unmanned Martian/Titan explorations. The entry vehicle design, to the surface of Mars or Titan and henceforth return with samples to earth, might be one which is flexible, deployable and inflatable decelerator of a ballute. The hypersonic entry of such vehicles will cover rarefied to continuum flow regimes, going through the transition flow regime of the Knudsen number range of [0<Kn<0.5]. Shown in Figure 1 are Earth/Mars entry profiles of the Knudsen number, Mach number, and dynamics pressure. It is seen that the peak dynamic pressure zone is critical for aeroelastic instability, and falls in the transition regime (0.0001<Kn<0.5) of the hypersonic entry. The flows of this rarefied hypersonic regime and the following supersonic to transonic regime are expected to interact strongly with the inflatable ballute during the course of its atmospheric entry. This type of interaction, called inflatable aeroelasticity, is highly nonlinear because of the expected large deformations of the inflatable structure and of the flow conditions during entry. In order to compute the aeroelastic performance of the ballute, a time-accurate Computational Fluid Dynamics (CFD) method is required. Compared with other methods for rarefied gas flow, e.g., DSMC (which has limitation for steady flow) and Lattice-Boltzmann equation (which is generally for low speed flow), the Kinetic BGK method of Xu, called BGK-NS method, [1,3~6] could be a potential candidate in that it is a time-accurate CFD method as it is unified in the transition to continuum flow regimes. Furthermore, the BGK-NS method compute the convective term and viscous term in one shot. And BGK-NS method has advantage in the compactness of the discretion stencil, offering a stable, mesh-independent discretization and a sound physical rooted in gas-kinetic theory. In this paper, the method developed for two-dimensional BGK solver is extended to the solution of threedimensional viscous on body-fitted grid. The second order accuracy cell-centered finite volume method is applied for to solve the BGK equation. The discretized equation will produce a Ordinary Differential Equation (ODE) equation. The ODE equation can be marched along time by Runge-Kutta integration or implicit scheme." @default.
- W2313564936 created "2016-06-24" @default.
- W2313564936 creator A5017745836 @default.
- W2313564936 creator A5051480539 @default.
- W2313564936 creator A5067412578 @default.
- W2313564936 creator A5088913300 @default.
- W2313564936 date "2011-06-14" @default.
- W2313564936 modified "2023-09-22" @default.
- W2313564936 title "Development of a Three-Dimensional BGK Solver" @default.
- W2313564936 cites W2017700359 @default.
- W2313564936 cites W2083659289 @default.
- W2313564936 cites W2149681428 @default.
- W2313564936 cites W2158222923 @default.
- W2313564936 cites W2334253776 @default.
- W2313564936 doi "https://doi.org/10.2514/6.2011-3708" @default.
- W2313564936 hasPublicationYear "2011" @default.
- W2313564936 type Work @default.
- W2313564936 sameAs 2313564936 @default.
- W2313564936 citedByCount "0" @default.
- W2313564936 crossrefType "proceedings-article" @default.
- W2313564936 hasAuthorship W2313564936A5017745836 @default.
- W2313564936 hasAuthorship W2313564936A5051480539 @default.
- W2313564936 hasAuthorship W2313564936A5067412578 @default.
- W2313564936 hasAuthorship W2313564936A5088913300 @default.
- W2313564936 hasConcept C11413529 @default.
- W2313564936 hasConcept C117185709 @default.
- W2313564936 hasConcept C121332964 @default.
- W2313564936 hasConcept C126255220 @default.
- W2313564936 hasConcept C127413603 @default.
- W2313564936 hasConcept C13393347 @default.
- W2313564936 hasConcept C146978453 @default.
- W2313564936 hasConcept C167191414 @default.
- W2313564936 hasConcept C2778770139 @default.
- W2313564936 hasConcept C28826006 @default.
- W2313564936 hasConcept C33923547 @default.
- W2313564936 hasConcept C41008148 @default.
- W2313564936 hasConcept C45374587 @default.
- W2313564936 hasConcept C50478463 @default.
- W2313564936 hasConcept C50805821 @default.
- W2313564936 hasConcept C57879066 @default.
- W2313564936 hasConcept C74650414 @default.
- W2313564936 hasConcept C86252789 @default.
- W2313564936 hasConceptScore W2313564936C11413529 @default.
- W2313564936 hasConceptScore W2313564936C117185709 @default.
- W2313564936 hasConceptScore W2313564936C121332964 @default.
- W2313564936 hasConceptScore W2313564936C126255220 @default.
- W2313564936 hasConceptScore W2313564936C127413603 @default.
- W2313564936 hasConceptScore W2313564936C13393347 @default.
- W2313564936 hasConceptScore W2313564936C146978453 @default.
- W2313564936 hasConceptScore W2313564936C167191414 @default.
- W2313564936 hasConceptScore W2313564936C2778770139 @default.
- W2313564936 hasConceptScore W2313564936C28826006 @default.
- W2313564936 hasConceptScore W2313564936C33923547 @default.
- W2313564936 hasConceptScore W2313564936C41008148 @default.
- W2313564936 hasConceptScore W2313564936C45374587 @default.
- W2313564936 hasConceptScore W2313564936C50478463 @default.
- W2313564936 hasConceptScore W2313564936C50805821 @default.
- W2313564936 hasConceptScore W2313564936C57879066 @default.
- W2313564936 hasConceptScore W2313564936C74650414 @default.
- W2313564936 hasConceptScore W2313564936C86252789 @default.
- W2313564936 hasLocation W23135649361 @default.
- W2313564936 hasOpenAccess W2313564936 @default.
- W2313564936 hasPrimaryLocation W23135649361 @default.
- W2313564936 hasRelatedWork W1109740529 @default.
- W2313564936 hasRelatedWork W1510579858 @default.
- W2313564936 hasRelatedWork W1541145106 @default.
- W2313564936 hasRelatedWork W1963603889 @default.
- W2313564936 hasRelatedWork W1977125766 @default.
- W2313564936 hasRelatedWork W1997952300 @default.
- W2313564936 hasRelatedWork W2016083105 @default.
- W2313564936 hasRelatedWork W2033462431 @default.
- W2313564936 hasRelatedWork W2061080786 @default.
- W2313564936 hasRelatedWork W2071418111 @default.
- W2313564936 hasRelatedWork W2083306106 @default.
- W2313564936 hasRelatedWork W2109472273 @default.
- W2313564936 hasRelatedWork W2130344258 @default.
- W2313564936 hasRelatedWork W2314667668 @default.
- W2313564936 hasRelatedWork W2319516656 @default.
- W2313564936 hasRelatedWork W2353195962 @default.
- W2313564936 hasRelatedWork W3137584802 @default.
- W2313564936 hasRelatedWork W3163565306 @default.
- W2313564936 hasRelatedWork W3175490118 @default.
- W2313564936 hasRelatedWork W2562282681 @default.
- W2313564936 isParatext "false" @default.
- W2313564936 isRetracted "false" @default.
- W2313564936 magId "2313564936" @default.
- W2313564936 workType "article" @default.