Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313903585> ?p ?o ?g. }
- W2313903585 abstract "Template matching is frequently used in Digital Image Processing, Machine Vision, Remote Sensing and Pattern Recognition, and a large number of template matching algorithms have been proposed in literature.The performance of these algorithms may be evaluated from the perspective of accuracy as well as computational complexity.Algorithm designers face a tradeo between these two desirable characteristics; often, fast algorithms lack robustness and robust algorithms are computationally expensive. The basic problem we have addressed in this thesis is to develop fast as well as robust template matching algorithms.From the accuracy perspective, we choose correlation coecient to be the match measure because it is robust to linear intensity variations often encountered in practical problems.To ensure computational eciency, we choose bound based computation elimination approaches because they allow high speed up without compromising accuracy.Most existing elimination algorithms are based on simple match metrics such as Sum of Squared Di erences and Sum of Absolute Dierences.For correlation coecient, which is a more robust match measure, very limited eorts have been done to develop ecient elimination schemes.The main contribution of this thesis is the development of two di erent categories of bound based computation elimination algorithms for correlation coecient based fast template matching.We have named the algorithms in the rst category as Transitive Elimination Algorithms (Mahmood and Khan, 2007b, 2008, 2010), because these are based on transitive bounds on correlation coecient. In these algorithms, before computing correlation coecient, we compute bounds from neighboring search locations based on transitivity. The locations where upper bounds are less than the current known maximum are skipped from computations, as they can never become the best match location. As the percentage of skipped search locations increases, the template matching process becomes faster. Empirically, we have demonstrated speedups of up to an order of magnitude compared to existing fast algorithms without compromising accuracy. The overall speedup depends on the tightness of transitive bounds, which in turn is dependent on the strength of autocorrelation between nearby locations. Although high autocorrelation, required for eciency of transitive algorithms, is present in many template matching applications, it may not be guaranteed in general. We have developed a second category of bound based computation elimination algorithms, which are more generic and do not require speci c image statistics, such as high autocorrelation.We have named this category as Partial Correlation Elimination algorithms (Mahmood and Khan, 2007a, 2011).These algorithms are based on a monotonic formulation of correlation coecient.In this formulation, at a particular search location, correlation coecient monotonically decreases as consecutive pixels are processed.As soon as the value of partial correlation becomes less than the current known maximum, the remaining computations are skipped.If a high magnitude maximum is found at the start of the search process, the amount of skipped computations signi cantly increases, resulting in high speed up of the template matching process.In order to locate a high maximum at the start of search process, we have developed novel initialization schemes which are e ective for small and medium sized templates.For commonly used template sizes, we have demonstrated that PCE algorithms out-perform existing algorithms by a signi cant margin." @default.
- W2313903585 created "2016-06-24" @default.
- W2313903585 creator A5061017734 @default.
- W2313903585 date "2011-01-01" @default.
- W2313903585 modified "2023-09-25" @default.
- W2313903585 title "Computation Elimination Algorithms For Correlation Based Fast Template Matching" @default.
- W2313903585 cites W1481624564 @default.
- W2313903585 cites W1506898119 @default.
- W2313903585 cites W1520822062 @default.
- W2313903585 cites W1530303756 @default.
- W2313903585 cites W1533179050 @default.
- W2313903585 cites W1542249664 @default.
- W2313903585 cites W1551469350 @default.
- W2313903585 cites W1556231294 @default.
- W2313903585 cites W1564419782 @default.
- W2313903585 cites W1569455036 @default.
- W2313903585 cites W1573048751 @default.
- W2313903585 cites W1584364825 @default.
- W2313903585 cites W1586491017 @default.
- W2313903585 cites W1600276254 @default.
- W2313903585 cites W178701193 @default.
- W2313903585 cites W1832233747 @default.
- W2313903585 cites W1864947563 @default.
- W2313903585 cites W1870947790 @default.
- W2313903585 cites W1873746281 @default.
- W2313903585 cites W195533127 @default.
- W2313903585 cites W1963217530 @default.
- W2313903585 cites W1963623641 @default.
- W2313903585 cites W1964265940 @default.
- W2313903585 cites W1982753412 @default.
- W2313903585 cites W1985136763 @default.
- W2313903585 cites W1994685695 @default.
- W2313903585 cites W1995110908 @default.
- W2313903585 cites W1996933093 @default.
- W2313903585 cites W2004477950 @default.
- W2313903585 cites W201376559 @default.
- W2313903585 cites W2014625487 @default.
- W2313903585 cites W2015673220 @default.
- W2313903585 cites W2026440035 @default.
- W2313903585 cites W2038183992 @default.
- W2313903585 cites W2043698691 @default.
- W2313903585 cites W2045761317 @default.
- W2313903585 cites W2052161090 @default.
- W2313903585 cites W2054484909 @default.
- W2313903585 cites W2060697300 @default.
- W2313903585 cites W2061171222 @default.
- W2313903585 cites W2062730569 @default.
- W2313903585 cites W2063799737 @default.
- W2313903585 cites W2064980790 @default.
- W2313903585 cites W2073086065 @default.
- W2313903585 cites W2074724651 @default.
- W2313903585 cites W2081825452 @default.
- W2313903585 cites W2083333254 @default.
- W2313903585 cites W2084466783 @default.
- W2313903585 cites W2087387931 @default.
- W2313903585 cites W2091447156 @default.
- W2313903585 cites W2094449928 @default.
- W2313903585 cites W2096070062 @default.
- W2313903585 cites W2096804605 @default.
- W2313903585 cites W2097037076 @default.
- W2313903585 cites W2098072502 @default.
- W2313903585 cites W2099111195 @default.
- W2313903585 cites W2099578067 @default.
- W2313903585 cites W2099587770 @default.
- W2313903585 cites W2100282767 @default.
- W2313903585 cites W2101341100 @default.
- W2313903585 cites W2101650005 @default.
- W2313903585 cites W2102182691 @default.
- W2313903585 cites W2102189282 @default.
- W2313903585 cites W2103504761 @default.
- W2313903585 cites W2103729151 @default.
- W2313903585 cites W2103792409 @default.
- W2313903585 cites W2107110895 @default.
- W2313903585 cites W2107197698 @default.
- W2313903585 cites W2107583154 @default.
- W2313903585 cites W2109097641 @default.
- W2313903585 cites W2109842007 @default.
- W2313903585 cites W2110234042 @default.
- W2313903585 cites W2110754846 @default.
- W2313903585 cites W2111308925 @default.
- W2313903585 cites W2112358011 @default.
- W2313903585 cites W2115259248 @default.
- W2313903585 cites W2116449393 @default.
- W2313903585 cites W2119461015 @default.
- W2313903585 cites W2123119012 @default.
- W2313903585 cites W2123923666 @default.
- W2313903585 cites W2124641210 @default.
- W2313903585 cites W2127280683 @default.
- W2313903585 cites W2128470721 @default.
- W2313903585 cites W2128951809 @default.
- W2313903585 cites W2129143313 @default.
- W2313903585 cites W2130103520 @default.
- W2313903585 cites W2131063454 @default.
- W2313903585 cites W2131372145 @default.
- W2313903585 cites W2133059825 @default.
- W2313903585 cites W2133723677 @default.
- W2313903585 cites W2134053173 @default.
- W2313903585 cites W2136369781 @default.
- W2313903585 cites W2136580311 @default.
- W2313903585 cites W2137102674 @default.