Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313922182> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2313922182 abstract "Flexible manipulators such as tendon-driven serpentine manipulators perform better than traditional rigid ones in minimally invasive surgical tasks, including navigation in confined space through key-hole like incisions. However, due to the inherent nonlinearities and model uncertainties, motion control of such manipulators becomes extremely challenging. In this work, a hybrid framework combining Programming by Demonstration (PbD) and reinforcement learning is proposed to solve this problem. Gaussian Mixture Models (GMM), Gaussian Mixture Regression (GMR) and linear regression are used to learn the inverse kinematic model of the manipulator from human demonstrations. The learned model is used as nominal model to calculate the output end-effector trajectories of the manipulator. Two surgical tasks are performed to demonstrate the effectiveness of reinforcement learning: tube insertion and circle following. Gaussian noise is introduced to the standard model and the disturbed models are fed to the manipulator to calculate the actuator input with respect to the task specific end-effector trajectories. An expectation maximization (E-M) based reinforcement learning algorithm is used to update the disturbed model with returns from rollouts. Simulation results have verified that the disturbed model can be converged to the standard one and the tracking accuracy is enhanced." @default.
- W2313922182 created "2016-06-24" @default.
- W2313922182 creator A5010479652 @default.
- W2313922182 creator A5023887002 @default.
- W2313922182 creator A5032340829 @default.
- W2313922182 creator A5038493735 @default.
- W2313922182 date "2016-02-01" @default.
- W2313922182 modified "2023-09-30" @default.
- W2313922182 title "Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning" @default.
- W2313922182 cites W114517082 @default.
- W2313922182 cites W1601667748 @default.
- W2313922182 cites W1964357740 @default.
- W2313922182 cites W1967728830 @default.
- W2313922182 cites W1977655452 @default.
- W2313922182 cites W1985690171 @default.
- W2313922182 cites W1995071895 @default.
- W2313922182 cites W2000691728 @default.
- W2313922182 cites W2012204020 @default.
- W2313922182 cites W2012479417 @default.
- W2313922182 cites W2016765487 @default.
- W2313922182 cites W2038061090 @default.
- W2313922182 cites W2047191624 @default.
- W2313922182 cites W2050268494 @default.
- W2313922182 cites W2059515884 @default.
- W2313922182 cites W2095804824 @default.
- W2313922182 cites W2105594594 @default.
- W2313922182 cites W2110708319 @default.
- W2313922182 cites W2120772693 @default.
- W2313922182 cites W2124609748 @default.
- W2313922182 cites W2129515556 @default.
- W2313922182 cites W2150205249 @default.
- W2313922182 cites W2171428093 @default.
- W2313922182 cites W4211008118 @default.
- W2313922182 doi "https://doi.org/10.1109/icaci.2016.7449855" @default.
- W2313922182 hasPublicationYear "2016" @default.
- W2313922182 type Work @default.
- W2313922182 sameAs 2313922182 @default.
- W2313922182 citedByCount "24" @default.
- W2313922182 countsByYear W23139221822016 @default.
- W2313922182 countsByYear W23139221822017 @default.
- W2313922182 countsByYear W23139221822018 @default.
- W2313922182 countsByYear W23139221822019 @default.
- W2313922182 countsByYear W23139221822020 @default.
- W2313922182 countsByYear W23139221822021 @default.
- W2313922182 countsByYear W23139221822022 @default.
- W2313922182 countsByYear W23139221822023 @default.
- W2313922182 crossrefType "proceedings-article" @default.
- W2313922182 hasAuthorship W2313922182A5010479652 @default.
- W2313922182 hasAuthorship W2313922182A5023887002 @default.
- W2313922182 hasAuthorship W2313922182A5032340829 @default.
- W2313922182 hasAuthorship W2313922182A5038493735 @default.
- W2313922182 hasConcept C107457646 @default.
- W2313922182 hasConcept C127413603 @default.
- W2313922182 hasConcept C154945302 @default.
- W2313922182 hasConcept C41008148 @default.
- W2313922182 hasConcept C66938386 @default.
- W2313922182 hasConcept C67203356 @default.
- W2313922182 hasConcept C90509273 @default.
- W2313922182 hasConcept C97541855 @default.
- W2313922182 hasConceptScore W2313922182C107457646 @default.
- W2313922182 hasConceptScore W2313922182C127413603 @default.
- W2313922182 hasConceptScore W2313922182C154945302 @default.
- W2313922182 hasConceptScore W2313922182C41008148 @default.
- W2313922182 hasConceptScore W2313922182C66938386 @default.
- W2313922182 hasConceptScore W2313922182C67203356 @default.
- W2313922182 hasConceptScore W2313922182C90509273 @default.
- W2313922182 hasConceptScore W2313922182C97541855 @default.
- W2313922182 hasLocation W23139221821 @default.
- W2313922182 hasOpenAccess W2313922182 @default.
- W2313922182 hasPrimaryLocation W23139221821 @default.
- W2313922182 hasRelatedWork W2923653485 @default.
- W2313922182 hasRelatedWork W2952472710 @default.
- W2313922182 hasRelatedWork W2957776456 @default.
- W2313922182 hasRelatedWork W3005560120 @default.
- W2313922182 hasRelatedWork W3037422413 @default.
- W2313922182 hasRelatedWork W4206669594 @default.
- W2313922182 hasRelatedWork W4224287422 @default.
- W2313922182 hasRelatedWork W4255994452 @default.
- W2313922182 hasRelatedWork W4319773215 @default.
- W2313922182 hasRelatedWork W4361026739 @default.
- W2313922182 isParatext "false" @default.
- W2313922182 isRetracted "false" @default.
- W2313922182 magId "2313922182" @default.
- W2313922182 workType "article" @default.