Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313954171> ?p ?o ?g. }
- W2313954171 abstract "In this paper, a sampling-based RBDO method using a classification method is presented. The probabilistic sensitivity analysis is used to compute sensitivities of probabilistic constraints with respect to random variables. Since the probabilistic sensitivity analysis requires only the limit state function, and not the response surface or sensitivity of the response, an efficient classification method can be used for a sampling-based RBDO. The proposed virtual support vector machine (VSVM), which is a classification method, is a support vector machine (SVM) with virtual samples. By introducing virtual samples, VSVM overcomes the deficiency in existing SVM that uses only classification information as their input. In this paper, the universal Kriging method is used to obtain locations of virtual samples to improve the accuracy of the limit state function for highly nonlinear problems. A sequential sampling strategy effectively inserts new samples near the limit state function. In sampling-based RBDO, Monte Carlo simulation (MCS) is used for the reliability analysis and probabilistic sensitivity analysis. Since SVM is an explicit classification method, unlike implicit methods, computational cost for evaluating a large number of MCS samples can be significantly reduced. Several efficiency strategies, such as the hyper-spherical local window for generation of the limit state function and the Transformations/Gibbs sampling method to generate uniform samples in the hyper-sphere, are also applied. Examples show that the proposed sampling-based RBDO using VSVM yields better efficiency in terms of the number of required samples and the computational cost for evaluating MCS samples while maintaining accuracy similar to that of sampling-based RBDO using the implicit dynamic Kriging (D-Kriging) method." @default.
- W2313954171 created "2016-06-24" @default.
- W2313954171 creator A5004834009 @default.
- W2313954171 creator A5006193788 @default.
- W2313954171 creator A5029377181 @default.
- W2313954171 creator A5032498891 @default.
- W2313954171 creator A5070610249 @default.
- W2313954171 date "2012-08-12" @default.
- W2313954171 modified "2023-10-04" @default.
- W2313954171 title "Sampling-Based RBDO Using Probabilistic Sensitivity Analysis and Virtual Support Vector Machine" @default.
- W2313954171 cites W101663867 @default.
- W2313954171 cites W127579287 @default.
- W2313954171 cites W1487678510 @default.
- W2313954171 cites W1553407966 @default.
- W2313954171 cites W1560724230 @default.
- W2313954171 cites W1573176827 @default.
- W2313954171 cites W1604938182 @default.
- W2313954171 cites W1815731809 @default.
- W2313954171 cites W1977339184 @default.
- W2313954171 cites W1984753492 @default.
- W2313954171 cites W1995565517 @default.
- W2313954171 cites W1997577903 @default.
- W2313954171 cites W2001842014 @default.
- W2313954171 cites W2002272403 @default.
- W2313954171 cites W2010031315 @default.
- W2313954171 cites W2015459991 @default.
- W2313954171 cites W2016670346 @default.
- W2313954171 cites W2033320212 @default.
- W2313954171 cites W2035072927 @default.
- W2313954171 cites W2041684917 @default.
- W2313954171 cites W2044458183 @default.
- W2313954171 cites W2048711666 @default.
- W2313954171 cites W2066562643 @default.
- W2313954171 cites W2068892839 @default.
- W2313954171 cites W2071467620 @default.
- W2313954171 cites W2084625646 @default.
- W2313954171 cites W2085404581 @default.
- W2313954171 cites W2087309778 @default.
- W2313954171 cites W2093229042 @default.
- W2313954171 cites W2093304293 @default.
- W2313954171 cites W2096462449 @default.
- W2313954171 cites W2109943925 @default.
- W2313954171 cites W2110780879 @default.
- W2313954171 cites W2112147653 @default.
- W2313954171 cites W2130604969 @default.
- W2313954171 cites W2131733133 @default.
- W2313954171 cites W2139212933 @default.
- W2313954171 cites W2142128101 @default.
- W2313954171 cites W2143022286 @default.
- W2313954171 cites W2145475762 @default.
- W2313954171 cites W2147922634 @default.
- W2313954171 cites W2148603752 @default.
- W2313954171 cites W2156909104 @default.
- W2313954171 cites W2178011284 @default.
- W2313954171 cites W2314675437 @default.
- W2313954171 cites W2321220958 @default.
- W2313954171 cites W2329347756 @default.
- W2313954171 cites W3020882730 @default.
- W2313954171 cites W35651078 @default.
- W2313954171 cites W55674037 @default.
- W2313954171 cites W639640889 @default.
- W2313954171 cites W650322639 @default.
- W2313954171 cites W740415 @default.
- W2313954171 doi "https://doi.org/10.1115/detc2012-70715" @default.
- W2313954171 hasPublicationYear "2012" @default.
- W2313954171 type Work @default.
- W2313954171 sameAs 2313954171 @default.
- W2313954171 citedByCount "1" @default.
- W2313954171 countsByYear W23139541712014 @default.
- W2313954171 crossrefType "proceedings-article" @default.
- W2313954171 hasAuthorship W2313954171A5004834009 @default.
- W2313954171 hasAuthorship W2313954171A5006193788 @default.
- W2313954171 hasAuthorship W2313954171A5029377181 @default.
- W2313954171 hasAuthorship W2313954171A5032498891 @default.
- W2313954171 hasAuthorship W2313954171A5070610249 @default.
- W2313954171 hasConcept C105795698 @default.
- W2313954171 hasConcept C106131492 @default.
- W2313954171 hasConcept C107673813 @default.
- W2313954171 hasConcept C11413529 @default.
- W2313954171 hasConcept C119857082 @default.
- W2313954171 hasConcept C12267149 @default.
- W2313954171 hasConcept C127413603 @default.
- W2313954171 hasConcept C134306372 @default.
- W2313954171 hasConcept C14036430 @default.
- W2313954171 hasConcept C140779682 @default.
- W2313954171 hasConcept C151201525 @default.
- W2313954171 hasConcept C154945302 @default.
- W2313954171 hasConcept C158424031 @default.
- W2313954171 hasConcept C189119545 @default.
- W2313954171 hasConcept C19499675 @default.
- W2313954171 hasConcept C21200559 @default.
- W2313954171 hasConcept C24326235 @default.
- W2313954171 hasConcept C31972630 @default.
- W2313954171 hasConcept C33923547 @default.
- W2313954171 hasConcept C41008148 @default.
- W2313954171 hasConcept C49937458 @default.
- W2313954171 hasConcept C52001869 @default.
- W2313954171 hasConcept C52740198 @default.
- W2313954171 hasConcept C78458016 @default.
- W2313954171 hasConcept C81692654 @default.