Matches in SemOpenAlex for { <https://semopenalex.org/work/W2314187005> ?p ?o ?g. }
- W2314187005 endingPage "734" @default.
- W2314187005 startingPage "569" @default.
- W2314187005 abstract "We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal–dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration." @default.
- W2314187005 created "2016-06-24" @default.
- W2314187005 creator A5018841476 @default.
- W2314187005 date "2011-04-28" @default.
- W2314187005 modified "2023-10-05" @default.
- W2314187005 title "Variationally consistent discretization schemes and numerical algorithms for contact problems" @default.
- W2314187005 cites W117927 @default.
- W2314187005 cites W1490112587 @default.
- W2314187005 cites W1498712972 @default.
- W2314187005 cites W1512418819 @default.
- W2314187005 cites W1516681311 @default.
- W2314187005 cites W1518039036 @default.
- W2314187005 cites W1522589176 @default.
- W2314187005 cites W1534189570 @default.
- W2314187005 cites W1547166419 @default.
- W2314187005 cites W1548589512 @default.
- W2314187005 cites W1554302165 @default.
- W2314187005 cites W1579781026 @default.
- W2314187005 cites W1594537858 @default.
- W2314187005 cites W1595782612 @default.
- W2314187005 cites W1596437024 @default.
- W2314187005 cites W1604311391 @default.
- W2314187005 cites W1607719246 @default.
- W2314187005 cites W164949334 @default.
- W2314187005 cites W175419979 @default.
- W2314187005 cites W179372779 @default.
- W2314187005 cites W184188664 @default.
- W2314187005 cites W1929029113 @default.
- W2314187005 cites W1963795254 @default.
- W2314187005 cites W1964244849 @default.
- W2314187005 cites W1964986437 @default.
- W2314187005 cites W1965818487 @default.
- W2314187005 cites W1966388474 @default.
- W2314187005 cites W1966990945 @default.
- W2314187005 cites W1969766291 @default.
- W2314187005 cites W1970449840 @default.
- W2314187005 cites W1970735217 @default.
- W2314187005 cites W1971284863 @default.
- W2314187005 cites W1971606961 @default.
- W2314187005 cites W1972053447 @default.
- W2314187005 cites W1973776666 @default.
- W2314187005 cites W1974396656 @default.
- W2314187005 cites W1975465154 @default.
- W2314187005 cites W1976125141 @default.
- W2314187005 cites W1976222039 @default.
- W2314187005 cites W1976565091 @default.
- W2314187005 cites W1978346998 @default.
- W2314187005 cites W1978704752 @default.
- W2314187005 cites W1979157957 @default.
- W2314187005 cites W1979167448 @default.
- W2314187005 cites W1979668890 @default.
- W2314187005 cites W1983245706 @default.
- W2314187005 cites W1983707305 @default.
- W2314187005 cites W1985588167 @default.
- W2314187005 cites W1985629301 @default.
- W2314187005 cites W1985871110 @default.
- W2314187005 cites W1986850130 @default.
- W2314187005 cites W1989168869 @default.
- W2314187005 cites W1989607141 @default.
- W2314187005 cites W1989886614 @default.
- W2314187005 cites W1989895848 @default.
- W2314187005 cites W1991372332 @default.
- W2314187005 cites W1991712719 @default.
- W2314187005 cites W1992628806 @default.
- W2314187005 cites W1992893649 @default.
- W2314187005 cites W1993508223 @default.
- W2314187005 cites W1993999982 @default.
- W2314187005 cites W1994789545 @default.
- W2314187005 cites W1995177060 @default.
- W2314187005 cites W1995723266 @default.
- W2314187005 cites W1996672299 @default.
- W2314187005 cites W1997720312 @default.
- W2314187005 cites W2000066796 @default.
- W2314187005 cites W2000362570 @default.
- W2314187005 cites W2000894128 @default.
- W2314187005 cites W2001413257 @default.
- W2314187005 cites W2001792862 @default.
- W2314187005 cites W2002057785 @default.
- W2314187005 cites W2002080383 @default.
- W2314187005 cites W2002669955 @default.
- W2314187005 cites W2003105834 @default.
- W2314187005 cites W2004021820 @default.
- W2314187005 cites W2004898338 @default.
- W2314187005 cites W2005634505 @default.
- W2314187005 cites W2006090480 @default.
- W2314187005 cites W2008211093 @default.
- W2314187005 cites W2008994244 @default.
- W2314187005 cites W2009553148 @default.
- W2314187005 cites W2009671411 @default.
- W2314187005 cites W2009985306 @default.
- W2314187005 cites W2010427465 @default.
- W2314187005 cites W2010902963 @default.
- W2314187005 cites W2011430695 @default.
- W2314187005 cites W2011596034 @default.
- W2314187005 cites W2011828708 @default.
- W2314187005 cites W2013051939 @default.
- W2314187005 cites W2013175317 @default.
- W2314187005 cites W2014549466 @default.