Matches in SemOpenAlex for { <https://semopenalex.org/work/W2315014740> ?p ?o ?g. }
- W2315014740 endingPage "236" @default.
- W2315014740 startingPage "221" @default.
- W2315014740 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 433:221-236 (2011) - DOI: https://doi.org/10.3354/meps09171 Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes Jonathan J. Dale1,2,*, Natalie J. Wallsgrove3, Brian N. Popp4, Kim N. Holland1 1Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawaii 96744, USA 2Department of Zoology, 3Department of Oceanography, and 4Department of Geology and Geophysics, University of Hawai‘i at Mānoa, Honolulu, Hawaii 96822, USA *Email: jjdale@hawaii.edu ABSTRACT: Identification of nursery habitats and knowledge of the trophic ecology and habitat use of juvenile fishes within these habitats are fundamental in developing sound management and conservation strategies. The brown stingray Dasyatis lata is a large benthic predator that inhabits the coastal waters of Hawai‘i. Although abundant in these ecosystems, little is known about its basic ecology. Stomach content, bulk and amino acid stable isotope analyses were used to assess diet and habitat use of juvenile brown stingrays and to examine the possibility of competitive interactions with juvenile scalloped hammerhead sharks Sphyrna lewini that are sympatric with brown stingrays in Kāne‘ohe Bay, Oahu. Based on stomach contents, brown stingrays fed almost exclusively on crustaceans. An ontogenetic shift in stingray diet and an increase in relative trophic position (TP) were apparent from stomach content and stable isotope analysis. Stingray bulk δ13C and δ15N values indicated long-term foraging fidelity to subregions of the bay. Use of Kāne‘ohe Bay as a nursery habitat was supported by nitrogen isotopic analysis of individual amino acids from stingray muscle samples. Our results clearly demonstrated that stingrays foraged within the bay for the majority of their juvenile lives then shifted to offshore habitats with the onset of sexual maturity. Trophic enrichment factors used to estimate TPs from amino acid analysis in previous studies may underestimate TPs in elasmobranchs owing to urea retention for osmoregulation. Potential prey resources were partitioned between stingrays and juvenile scalloped hammerhead sharks, and TP estimates from each analytical method indicated that juvenile scalloped hammerhead sharks forage on higher TP prey than do juvenile brown stingrays. These results show that the study of foraging ecology and habitat use of marine animals can greatly benefit from integrating traditional stomach content and bulk stable isotopic analyses with nitrogen isotopic analyses of individual amino acids. KEY WORDS: Elasmobranch · Amino acids · Trophic position · Ontogenetic shift · Resource partitioning Full text in pdf format PreviousNextCite this article as: Dale JJ, Wallsgrove NJ, Popp BN, Holland KN (2011) Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Mar Ecol Prog Ser 433:221-236. https://doi.org/10.3354/meps09171 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 433. Online publication date: July 18, 2011 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2011 Inter-Research." @default.
- W2315014740 created "2016-06-24" @default.
- W2315014740 creator A5000275661 @default.
- W2315014740 creator A5011657766 @default.
- W2315014740 creator A5013204942 @default.
- W2315014740 creator A5051971197 @default.
- W2315014740 date "2011-07-18" @default.
- W2315014740 modified "2023-10-07" @default.
- W2315014740 title "Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes" @default.
- W2315014740 cites W139798083 @default.
- W2315014740 cites W1492718420 @default.
- W2315014740 cites W1576152685 @default.
- W2315014740 cites W1607963952 @default.
- W2315014740 cites W1653926037 @default.
- W2315014740 cites W1967544946 @default.
- W2315014740 cites W1970183529 @default.
- W2315014740 cites W1970869035 @default.
- W2315014740 cites W1976702804 @default.
- W2315014740 cites W1981669721 @default.
- W2315014740 cites W1984895732 @default.
- W2315014740 cites W1993685048 @default.
- W2315014740 cites W1994785855 @default.
- W2315014740 cites W1996337702 @default.
- W2315014740 cites W1999068740 @default.
- W2315014740 cites W2002563058 @default.
- W2315014740 cites W2011096867 @default.
- W2315014740 cites W2013121941 @default.
- W2315014740 cites W2016808870 @default.
- W2315014740 cites W2024385676 @default.
- W2315014740 cites W2031471816 @default.
- W2315014740 cites W2032033968 @default.
- W2315014740 cites W2035595832 @default.
- W2315014740 cites W2041455032 @default.
- W2315014740 cites W2045567754 @default.
- W2315014740 cites W2052016545 @default.
- W2315014740 cites W2052057317 @default.
- W2315014740 cites W2055399936 @default.
- W2315014740 cites W2056153447 @default.
- W2315014740 cites W2061693105 @default.
- W2315014740 cites W2064473291 @default.
- W2315014740 cites W2067804762 @default.
- W2315014740 cites W2068002500 @default.
- W2315014740 cites W2068583121 @default.
- W2315014740 cites W2075626674 @default.
- W2315014740 cites W2077542909 @default.
- W2315014740 cites W2077866865 @default.
- W2315014740 cites W2081487017 @default.
- W2315014740 cites W2084546046 @default.
- W2315014740 cites W2085863098 @default.
- W2315014740 cites W2090204672 @default.
- W2315014740 cites W2091552516 @default.
- W2315014740 cites W2105837930 @default.
- W2315014740 cites W2108163206 @default.
- W2315014740 cites W2109276457 @default.
- W2315014740 cites W2113023092 @default.
- W2315014740 cites W2114372889 @default.
- W2315014740 cites W2118193777 @default.
- W2315014740 cites W2120591412 @default.
- W2315014740 cites W2124118547 @default.
- W2315014740 cites W2126272560 @default.
- W2315014740 cites W2130534187 @default.
- W2315014740 cites W2137001683 @default.
- W2315014740 cites W2140294119 @default.
- W2315014740 cites W2147223000 @default.
- W2315014740 cites W2147818827 @default.
- W2315014740 cites W2149418342 @default.
- W2315014740 cites W2155009193 @default.
- W2315014740 cites W2156345525 @default.
- W2315014740 cites W2158393084 @default.
- W2315014740 cites W2160832272 @default.
- W2315014740 cites W2161737112 @default.
- W2315014740 cites W2162617707 @default.
- W2315014740 cites W2170620514 @default.
- W2315014740 cites W2253553783 @default.
- W2315014740 cites W2321694402 @default.
- W2315014740 cites W2324062330 @default.
- W2315014740 cites W2335590865 @default.
- W2315014740 cites W4233412119 @default.
- W2315014740 cites W4249745376 @default.
- W2315014740 cites W4249838700 @default.
- W2315014740 doi "https://doi.org/10.3354/meps09171" @default.
- W2315014740 hasPublicationYear "2011" @default.
- W2315014740 type Work @default.
- W2315014740 sameAs 2315014740 @default.
- W2315014740 citedByCount "133" @default.
- W2315014740 countsByYear W23150147402012 @default.
- W2315014740 countsByYear W23150147402013 @default.
- W2315014740 countsByYear W23150147402014 @default.
- W2315014740 countsByYear W23150147402015 @default.
- W2315014740 countsByYear W23150147402016 @default.
- W2315014740 countsByYear W23150147402017 @default.
- W2315014740 countsByYear W23150147402018 @default.
- W2315014740 countsByYear W23150147402019 @default.
- W2315014740 countsByYear W23150147402020 @default.
- W2315014740 countsByYear W23150147402021 @default.
- W2315014740 countsByYear W23150147402022 @default.
- W2315014740 countsByYear W23150147402023 @default.
- W2315014740 crossrefType "journal-article" @default.