Matches in SemOpenAlex for { <https://semopenalex.org/work/W2315928207> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2315928207 endingPage "290" @default.
- W2315928207 startingPage "280" @default.
- W2315928207 abstract "This paper describes a lane-level localization algorithm based on a map-matching method for application to automated driving in urban environments. The lane-level localization implies localizing the vehicle with centimeter-level accuracy. In order to achieve a satisfactory level of position accuracy with a low-cost GPS, a sensor fusion approach is essential for lane-level localization. The proposed sensor fusion approach for the lane-level localization of a vehicle uses an around view monitoring (AVM) module and vehicle sensors. The proposed algorithm consists of three parts: lane detection, position correction, and localization filter. In order to detect lanes, a commercialized AVM module is used. Since this module can acquire an image around the vehicle, it is possible to obtain accurate position information of the lanes. With this information, the vehicle position can be corrected by the iterative closest point (ICP) algorithm. This algorithm estimates the rigid transformation between the lane map and lanes obtained by AVM in real-time. The vehicle position corrected by this transformation is fused with the information of vehicle sensors based on an extended Kalman filter. For higher accuracy, the covariance of the ICP is estimated using Haralick's method. The performance of the proposed localization algorithm is verified via vehicle tests on a proving ground. Test results show that the proposed method can achieve localization centimeter-level accuracy. The proposed algorithm will be useful in the implementation of automated driving control." @default.
- W2315928207 created "2016-06-24" @default.
- W2315928207 creator A5006663429 @default.
- W2315928207 creator A5023689051 @default.
- W2315928207 creator A5026190297 @default.
- W2315928207 creator A5068367388 @default.
- W2315928207 date "2017-02-01" @default.
- W2315928207 modified "2023-10-02" @default.
- W2315928207 title "Lane-Level Localization Using an AVM Camera for an Automated Driving Vehicle in Urban Environments" @default.
- W2315928207 cites W1552518809 @default.
- W2315928207 cites W1596086302 @default.
- W2315928207 cites W1883517952 @default.
- W2315928207 cites W1953793983 @default.
- W2315928207 cites W1972155526 @default.
- W2315928207 cites W1978791302 @default.
- W2315928207 cites W1986575189 @default.
- W2315928207 cites W1988605247 @default.
- W2315928207 cites W2009659616 @default.
- W2315928207 cites W2022202433 @default.
- W2315928207 cites W2034207289 @default.
- W2315928207 cites W2034643758 @default.
- W2315928207 cites W2049981393 @default.
- W2315928207 cites W2056020240 @default.
- W2315928207 cites W2060061906 @default.
- W2315928207 cites W2081271920 @default.
- W2315928207 cites W2096928959 @default.
- W2315928207 cites W2102664783 @default.
- W2315928207 cites W2107059967 @default.
- W2315928207 cites W2110743579 @default.
- W2315928207 cites W2111969977 @default.
- W2315928207 cites W2118164523 @default.
- W2315928207 cites W2119851068 @default.
- W2315928207 cites W2131390079 @default.
- W2315928207 cites W2132074394 @default.
- W2315928207 cites W2136229390 @default.
- W2315928207 cites W2137183867 @default.
- W2315928207 cites W2143404995 @default.
- W2315928207 cites W2143742957 @default.
- W2315928207 cites W2152499880 @default.
- W2315928207 cites W2159132531 @default.
- W2315928207 cites W3102168793 @default.
- W2315928207 doi "https://doi.org/10.1109/tmech.2016.2533635" @default.
- W2315928207 hasPublicationYear "2017" @default.
- W2315928207 type Work @default.
- W2315928207 sameAs 2315928207 @default.
- W2315928207 citedByCount "46" @default.
- W2315928207 countsByYear W23159282072016 @default.
- W2315928207 countsByYear W23159282072017 @default.
- W2315928207 countsByYear W23159282072018 @default.
- W2315928207 countsByYear W23159282072019 @default.
- W2315928207 countsByYear W23159282072020 @default.
- W2315928207 countsByYear W23159282072021 @default.
- W2315928207 countsByYear W23159282072022 @default.
- W2315928207 countsByYear W23159282072023 @default.
- W2315928207 crossrefType "journal-article" @default.
- W2315928207 hasAuthorship W2315928207A5006663429 @default.
- W2315928207 hasAuthorship W2315928207A5023689051 @default.
- W2315928207 hasAuthorship W2315928207A5026190297 @default.
- W2315928207 hasAuthorship W2315928207A5068367388 @default.
- W2315928207 hasConcept C121684516 @default.
- W2315928207 hasConcept C154945302 @default.
- W2315928207 hasConcept C31972630 @default.
- W2315928207 hasConcept C41008148 @default.
- W2315928207 hasConceptScore W2315928207C121684516 @default.
- W2315928207 hasConceptScore W2315928207C154945302 @default.
- W2315928207 hasConceptScore W2315928207C31972630 @default.
- W2315928207 hasConceptScore W2315928207C41008148 @default.
- W2315928207 hasFunder F4320322030 @default.
- W2315928207 hasFunder F4320322120 @default.
- W2315928207 hasIssue "1" @default.
- W2315928207 hasLocation W23159282071 @default.
- W2315928207 hasOpenAccess W2315928207 @default.
- W2315928207 hasPrimaryLocation W23159282071 @default.
- W2315928207 hasRelatedWork W1891287906 @default.
- W2315928207 hasRelatedWork W1969923398 @default.
- W2315928207 hasRelatedWork W2036807459 @default.
- W2315928207 hasRelatedWork W2058170566 @default.
- W2315928207 hasRelatedWork W2166044122 @default.
- W2315928207 hasRelatedWork W2229312674 @default.
- W2315928207 hasRelatedWork W258625772 @default.
- W2315928207 hasRelatedWork W2755342338 @default.
- W2315928207 hasRelatedWork W2772917594 @default.
- W2315928207 hasRelatedWork W3116076068 @default.
- W2315928207 hasVolume "22" @default.
- W2315928207 isParatext "false" @default.
- W2315928207 isRetracted "false" @default.
- W2315928207 magId "2315928207" @default.
- W2315928207 workType "article" @default.