Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316100153> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2316100153 endingPage "885" @default.
- W2316100153 startingPage "885" @default.
- W2316100153 abstract "Dear Editor-in-Chief, We respond here to a critique of magnitude-based inference (MBI) by Welsh and Knight (8). They asserted that MBI is just another form of null hypothesis significance testing (NHST), whereas it is philosophically and statistically distinct. Type 1 and Type 2 errors of MBI are conceptually quite unlike those of NHST. MBI forces researchers to define and justify clinically, practically, or mechanistically meaningful values of an effect. MBI then provides a framework for interpreting uncertainty in the effect in relation to these values, making it attractive to end users. MBI is actually a “reference Bayes” inferential method, combining the usual confidence interval with a noninformative prior belief (7). Noninformative prior beliefs are justified because prior knowledge is often vague (3). Moreover, MBI has the practical advantage of using standard sampling theory to obtain an intuitive (Bayesian) interpretation of the confidence interval as the likely range for the true effect (2,3,7). As such, MBI is quite possibly the ideal frequentist–Bayesian hybrid. Utilizing the logical fallacy of the straw man, Welsh and Knight (8) implied that MBI ignores data structure, multiple covariates, distribution and scale of the outcome variable, and presentation of effect size—all issues that we have attended to. They also practiced “mathematistry”—statistical theorizing that redefines a real-world problem (here, making robust inferences) without solving it (1,5). Using analytical formulas and simulation, we have verified that MBI Type 1 error rates (false discoveries of clear substantial effects when the true effect is null) are much less than Welsh and Knight (8) presented. The rates are acceptable given that the “errors” are accompanied by probabilistic terms representing level of evidence. For example, in a controlled trial such as the one analyzed by Welsh and Knight (8) (typical error of three times the smallest important effect), a true null produces clear possibly substantial effects only 21% of the time with nonclinical MBI, whereas the rates for likely substantial, very likely substantial, and most likely substantial are only 14%, 1.6%, and 0.1%, respectively. With conservative clinical MBI, the corresponding rates are only 0.0%, 2.1%, 0.9%, and 0.1%. Publication bias will decline if the criterion for manuscript acceptance is clear rather than significant, tempering any concerns about overall Type 1 error rates with MBI. In our simulations of the above controlled trial, trivial true effects produce trivial to small clear effects on average, but significant effects (P < 0.05 or P < 0.01) are mostly small to moderate. The differences arise from gratifyingly higher rates of potentially publishable clear effects with MBI (36%–81%) than of significant effects with NHST (1%–11%). The sample size spreadsheet at Sportscience (sportsci.org) produces correct estimates for NHST (verified by G*Power 3 software [4]) and MBI (verified by the Type 1 and Type 2 error rates shown). In conclusion, Welsh and Knight (8) proposed that we either present confidence intervals or use “a fully Bayesian analysis” in place of MBI. However, they were silent on how to make inferences with confidence intervals, and full Bayesian analyses are not about to become universal: “we will all be Bayesians in 2020” (6) seems most unlikely. Meanwhile, the robust hybrid approach of MBI is genuinely progressive and becoming popular." @default.
- W2316100153 created "2016-06-24" @default.
- W2316100153 creator A5023060130 @default.
- W2316100153 creator A5023579171 @default.
- W2316100153 date "2015-04-01" @default.
- W2316100153 modified "2023-09-25" @default.
- W2316100153 title "The Case for Magnitude-based Inference" @default.
- W2316100153 cites W1965481556 @default.
- W2316100153 cites W1993225572 @default.
- W2316100153 cites W2060725328 @default.
- W2316100153 cites W2062513499 @default.
- W2316100153 cites W2087484885 @default.
- W2316100153 cites W2099127326 @default.
- W2316100153 cites W2145860152 @default.
- W2316100153 doi "https://doi.org/10.1249/mss.0000000000000551" @default.
- W2316100153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25783666" @default.
- W2316100153 hasPublicationYear "2015" @default.
- W2316100153 type Work @default.
- W2316100153 sameAs 2316100153 @default.
- W2316100153 citedByCount "17" @default.
- W2316100153 countsByYear W23161001532016 @default.
- W2316100153 countsByYear W23161001532017 @default.
- W2316100153 countsByYear W23161001532018 @default.
- W2316100153 countsByYear W23161001532019 @default.
- W2316100153 countsByYear W23161001532020 @default.
- W2316100153 countsByYear W23161001532022 @default.
- W2316100153 crossrefType "journal-article" @default.
- W2316100153 hasAuthorship W2316100153A5023060130 @default.
- W2316100153 hasAuthorship W2316100153A5023579171 @default.
- W2316100153 hasConcept C105795698 @default.
- W2316100153 hasConcept C107673813 @default.
- W2316100153 hasConcept C111472728 @default.
- W2316100153 hasConcept C134261354 @default.
- W2316100153 hasConcept C138885662 @default.
- W2316100153 hasConcept C142291917 @default.
- W2316100153 hasConcept C149782125 @default.
- W2316100153 hasConcept C154945302 @default.
- W2316100153 hasConcept C160234255 @default.
- W2316100153 hasConcept C162376815 @default.
- W2316100153 hasConcept C191988596 @default.
- W2316100153 hasConcept C2776214188 @default.
- W2316100153 hasConcept C2781035248 @default.
- W2316100153 hasConcept C33923547 @default.
- W2316100153 hasConcept C40696583 @default.
- W2316100153 hasConcept C41008148 @default.
- W2316100153 hasConcept C87007009 @default.
- W2316100153 hasConceptScore W2316100153C105795698 @default.
- W2316100153 hasConceptScore W2316100153C107673813 @default.
- W2316100153 hasConceptScore W2316100153C111472728 @default.
- W2316100153 hasConceptScore W2316100153C134261354 @default.
- W2316100153 hasConceptScore W2316100153C138885662 @default.
- W2316100153 hasConceptScore W2316100153C142291917 @default.
- W2316100153 hasConceptScore W2316100153C149782125 @default.
- W2316100153 hasConceptScore W2316100153C154945302 @default.
- W2316100153 hasConceptScore W2316100153C160234255 @default.
- W2316100153 hasConceptScore W2316100153C162376815 @default.
- W2316100153 hasConceptScore W2316100153C191988596 @default.
- W2316100153 hasConceptScore W2316100153C2776214188 @default.
- W2316100153 hasConceptScore W2316100153C2781035248 @default.
- W2316100153 hasConceptScore W2316100153C33923547 @default.
- W2316100153 hasConceptScore W2316100153C40696583 @default.
- W2316100153 hasConceptScore W2316100153C41008148 @default.
- W2316100153 hasConceptScore W2316100153C87007009 @default.
- W2316100153 hasIssue "4" @default.
- W2316100153 hasLocation W23161001531 @default.
- W2316100153 hasLocation W23161001532 @default.
- W2316100153 hasOpenAccess W2316100153 @default.
- W2316100153 hasPrimaryLocation W23161001531 @default.
- W2316100153 hasRelatedWork W1635996619 @default.
- W2316100153 hasRelatedWork W1969750563 @default.
- W2316100153 hasRelatedWork W2358637578 @default.
- W2316100153 hasRelatedWork W3033632158 @default.
- W2316100153 hasRelatedWork W3169854707 @default.
- W2316100153 hasRelatedWork W3181444052 @default.
- W2316100153 hasRelatedWork W4220913474 @default.
- W2316100153 hasRelatedWork W4253477280 @default.
- W2316100153 hasRelatedWork W4295905522 @default.
- W2316100153 hasRelatedWork W4297513322 @default.
- W2316100153 hasVolume "47" @default.
- W2316100153 isParatext "false" @default.
- W2316100153 isRetracted "false" @default.
- W2316100153 magId "2316100153" @default.
- W2316100153 workType "article" @default.