Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316106704> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2316106704 endingPage "338" @default.
- W2316106704 startingPage "329" @default.
- W2316106704 abstract "Driving fatigue is a common occupational hazard for any long distance or professional driver, and fatigue detecting has major implications for transportation safety. Monitoring physiological signal while driving can provide the possibility to detect the fatigue and give the necessary warning. In this paper, fifty subjects participated in driving simulations experiment with their recorded EEG signals to induce two kinds of fatigue states: Alert and drowsy. Two nonlinear methods, approximate Entropy (AE) and Sample Entropy (SE), were used to characterize irregularity and complexity of EEG data. Subsequently Support Vector Machine (SVM) was applied to classify these two fatigue states. The experimental result shows that two complexity parameters are significantly decreased as the fatigue level increases. The result indicates that both of two nonlinear indicators can be used to characterize driver fatigue level. Furthermore, the combined measure feature results in higher classification accuracy, indicating the proposed classification method is more robust and effective, compared with single complexity measure." @default.
- W2316106704 created "2016-06-24" @default.
- W2316106704 creator A5004379619 @default.
- W2316106704 creator A5033658049 @default.
- W2316106704 creator A5052957147 @default.
- W2316106704 creator A5084588092 @default.
- W2316106704 creator A5051050779 @default.
- W2316106704 date "2016-03-31" @default.
- W2316106704 modified "2023-10-16" @default.
- W2316106704 title "Classifying Driving Fatigue Based on Combined Entropy Measure Using EEG Signals" @default.
- W2316106704 cites W1534865435 @default.
- W2316106704 cites W1563088657 @default.
- W2316106704 cites W1725507402 @default.
- W2316106704 cites W1862394037 @default.
- W2316106704 cites W1890107633 @default.
- W2316106704 cites W1971104338 @default.
- W2316106704 cites W1974687042 @default.
- W2316106704 cites W1979148805 @default.
- W2316106704 cites W1983946671 @default.
- W2316106704 cites W2004391995 @default.
- W2316106704 cites W2005305331 @default.
- W2316106704 cites W2012383929 @default.
- W2316106704 cites W2012713115 @default.
- W2316106704 cites W2040700600 @default.
- W2316106704 cites W2041935121 @default.
- W2316106704 cites W2043133488 @default.
- W2316106704 cites W2056108528 @default.
- W2316106704 cites W2065919594 @default.
- W2316106704 cites W2078718207 @default.
- W2316106704 cites W2085986654 @default.
- W2316106704 cites W2102244548 @default.
- W2316106704 cites W2107025871 @default.
- W2316106704 cites W2119821739 @default.
- W2316106704 cites W2144589738 @default.
- W2316106704 cites W2146182319 @default.
- W2316106704 doi "https://doi.org/10.14257/ijca.2016.9.3.30" @default.
- W2316106704 hasPublicationYear "2016" @default.
- W2316106704 type Work @default.
- W2316106704 sameAs 2316106704 @default.
- W2316106704 citedByCount "42" @default.
- W2316106704 countsByYear W23161067042016 @default.
- W2316106704 countsByYear W23161067042017 @default.
- W2316106704 countsByYear W23161067042018 @default.
- W2316106704 countsByYear W23161067042019 @default.
- W2316106704 countsByYear W23161067042020 @default.
- W2316106704 countsByYear W23161067042021 @default.
- W2316106704 countsByYear W23161067042022 @default.
- W2316106704 countsByYear W23161067042023 @default.
- W2316106704 crossrefType "journal-article" @default.
- W2316106704 hasAuthorship W2316106704A5004379619 @default.
- W2316106704 hasAuthorship W2316106704A5033658049 @default.
- W2316106704 hasAuthorship W2316106704A5051050779 @default.
- W2316106704 hasAuthorship W2316106704A5052957147 @default.
- W2316106704 hasAuthorship W2316106704A5084588092 @default.
- W2316106704 hasConcept C106301342 @default.
- W2316106704 hasConcept C121332964 @default.
- W2316106704 hasConcept C124101348 @default.
- W2316106704 hasConcept C153180895 @default.
- W2316106704 hasConcept C154945302 @default.
- W2316106704 hasConcept C15744967 @default.
- W2316106704 hasConcept C169760540 @default.
- W2316106704 hasConcept C2780009758 @default.
- W2316106704 hasConcept C28490314 @default.
- W2316106704 hasConcept C41008148 @default.
- W2316106704 hasConcept C522805319 @default.
- W2316106704 hasConcept C62520636 @default.
- W2316106704 hasConceptScore W2316106704C106301342 @default.
- W2316106704 hasConceptScore W2316106704C121332964 @default.
- W2316106704 hasConceptScore W2316106704C124101348 @default.
- W2316106704 hasConceptScore W2316106704C153180895 @default.
- W2316106704 hasConceptScore W2316106704C154945302 @default.
- W2316106704 hasConceptScore W2316106704C15744967 @default.
- W2316106704 hasConceptScore W2316106704C169760540 @default.
- W2316106704 hasConceptScore W2316106704C2780009758 @default.
- W2316106704 hasConceptScore W2316106704C28490314 @default.
- W2316106704 hasConceptScore W2316106704C41008148 @default.
- W2316106704 hasConceptScore W2316106704C522805319 @default.
- W2316106704 hasConceptScore W2316106704C62520636 @default.
- W2316106704 hasIssue "3" @default.
- W2316106704 hasLocation W23161067041 @default.
- W2316106704 hasOpenAccess W2316106704 @default.
- W2316106704 hasPrimaryLocation W23161067041 @default.
- W2316106704 hasRelatedWork W2033914206 @default.
- W2316106704 hasRelatedWork W2042327336 @default.
- W2316106704 hasRelatedWork W2046077695 @default.
- W2316106704 hasRelatedWork W2146076056 @default.
- W2316106704 hasRelatedWork W2163831990 @default.
- W2316106704 hasRelatedWork W2368779261 @default.
- W2316106704 hasRelatedWork W2378160586 @default.
- W2316106704 hasRelatedWork W2748952813 @default.
- W2316106704 hasRelatedWork W2899084033 @default.
- W2316106704 hasRelatedWork W3003836766 @default.
- W2316106704 hasVolume "9" @default.
- W2316106704 isParatext "false" @default.
- W2316106704 isRetracted "false" @default.
- W2316106704 magId "2316106704" @default.
- W2316106704 workType "article" @default.