Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316119401> ?p ?o ?g. }
- W2316119401 abstract "A generic history-penalized metabasin escape algorithm that contains no predetermined parameters is presented in this work. The spatial location and volume of imposed penalty functions in the configurational space are determined in self-learning processes as the 3$N$-dimensional potential energy surface is sampled. The computational efficiency is demonstrated using a binary Lennard-Jones liquid supercooled below the glass transition temperature, which shows an $O$(10${}^{3}$) reduction in the quadratic scaling coefficient of the overall computational cost as compared to the previous algorithm implementation. Furthermore, the metabasin sizes of supercooled liquids are obtained as a natural consequence of determining the self-learned penalty function width distributions. In the case of a bulk binary Lennard-Jones liquid at a fixed density of 1.2, typical metabasins are found to contain about 148 particles while having a correlation length of 3.09 when the system temperature drops below the glass transition temperature." @default.
- W2316119401 created "2016-06-24" @default.
- W2316119401 creator A5006794186 @default.
- W2316119401 creator A5014177230 @default.
- W2316119401 creator A5033882838 @default.
- W2316119401 creator A5042262474 @default.
- W2316119401 creator A5047593079 @default.
- W2316119401 date "2012-07-24" @default.
- W2316119401 modified "2023-10-06" @default.
- W2316119401 title "Self-learning metabasin escape algorithm for supercooled liquids" @default.
- W2316119401 cites W1965234283 @default.
- W2316119401 cites W1967084746 @default.
- W2316119401 cites W1967303178 @default.
- W2316119401 cites W1969025179 @default.
- W2316119401 cites W1971354120 @default.
- W2316119401 cites W1976663498 @default.
- W2316119401 cites W1980492771 @default.
- W2316119401 cites W1980890056 @default.
- W2316119401 cites W1986614779 @default.
- W2316119401 cites W1993826366 @default.
- W2316119401 cites W1997676547 @default.
- W2316119401 cites W1999522888 @default.
- W2316119401 cites W2000216463 @default.
- W2316119401 cites W2002408815 @default.
- W2316119401 cites W2003582562 @default.
- W2316119401 cites W2004751437 @default.
- W2316119401 cites W2012483350 @default.
- W2316119401 cites W2012756845 @default.
- W2316119401 cites W2019457726 @default.
- W2316119401 cites W2027602813 @default.
- W2316119401 cites W2028457175 @default.
- W2316119401 cites W2028612487 @default.
- W2316119401 cites W2034545706 @default.
- W2316119401 cites W2034856068 @default.
- W2316119401 cites W2040249893 @default.
- W2316119401 cites W2041753261 @default.
- W2316119401 cites W2044767119 @default.
- W2316119401 cites W2047516837 @default.
- W2316119401 cites W2048421180 @default.
- W2316119401 cites W2054785688 @default.
- W2316119401 cites W2058614470 @default.
- W2316119401 cites W2066599827 @default.
- W2316119401 cites W2068873743 @default.
- W2316119401 cites W2083432154 @default.
- W2316119401 cites W2083824429 @default.
- W2316119401 cites W2094132409 @default.
- W2316119401 cites W2117000100 @default.
- W2316119401 cites W2118032855 @default.
- W2316119401 cites W2149655632 @default.
- W2316119401 cites W2153434446 @default.
- W2316119401 cites W2166090045 @default.
- W2316119401 cites W2170797104 @default.
- W2316119401 cites W2995067424 @default.
- W2316119401 cites W2996513894 @default.
- W2316119401 cites W3104623136 @default.
- W2316119401 cites W3125707022 @default.
- W2316119401 cites W4240499263 @default.
- W2316119401 doi "https://doi.org/10.1103/physreve.86.016710" @default.
- W2316119401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23005566" @default.
- W2316119401 hasPublicationYear "2012" @default.
- W2316119401 type Work @default.
- W2316119401 sameAs 2316119401 @default.
- W2316119401 citedByCount "28" @default.
- W2316119401 countsByYear W23161194012013 @default.
- W2316119401 countsByYear W23161194012014 @default.
- W2316119401 countsByYear W23161194012015 @default.
- W2316119401 countsByYear W23161194012016 @default.
- W2316119401 countsByYear W23161194012017 @default.
- W2316119401 countsByYear W23161194012018 @default.
- W2316119401 countsByYear W23161194012019 @default.
- W2316119401 countsByYear W23161194012020 @default.
- W2316119401 countsByYear W23161194012021 @default.
- W2316119401 countsByYear W23161194012023 @default.
- W2316119401 crossrefType "journal-article" @default.
- W2316119401 hasAuthorship W2316119401A5006794186 @default.
- W2316119401 hasAuthorship W2316119401A5014177230 @default.
- W2316119401 hasAuthorship W2316119401A5033882838 @default.
- W2316119401 hasAuthorship W2316119401A5042262474 @default.
- W2316119401 hasAuthorship W2316119401A5047593079 @default.
- W2316119401 hasBestOaLocation W23161194011 @default.
- W2316119401 hasConcept C112964491 @default.
- W2316119401 hasConcept C121332964 @default.
- W2316119401 hasConcept C121864883 @default.
- W2316119401 hasConcept C122865956 @default.
- W2316119401 hasConcept C129844170 @default.
- W2316119401 hasConcept C14036430 @default.
- W2316119401 hasConcept C159985019 @default.
- W2316119401 hasConcept C18762648 @default.
- W2316119401 hasConcept C192562407 @default.
- W2316119401 hasConcept C2524010 @default.
- W2316119401 hasConcept C33923547 @default.
- W2316119401 hasConcept C48372109 @default.
- W2316119401 hasConcept C521977710 @default.
- W2316119401 hasConcept C78458016 @default.
- W2316119401 hasConcept C86803240 @default.
- W2316119401 hasConcept C94375191 @default.
- W2316119401 hasConcept C97355855 @default.
- W2316119401 hasConcept C99844830 @default.
- W2316119401 hasConceptScore W2316119401C112964491 @default.
- W2316119401 hasConceptScore W2316119401C121332964 @default.