Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316215170> ?p ?o ?g. }
- W2316215170 endingPage "230" @default.
- W2316215170 startingPage "217" @default.
- W2316215170 abstract "In the context of the Human Toxome project, mass spectroscopy-based metabolomics characterization of estrogen-stimulated MCF-7 cells was studied in order to support the untargeted deduction of pathways of toxicity. A targeted and untargeted approach using overrepresentation analysis (ORA), quantitative enrichment analysis (QEA) and pathway analysis (PA) and a metabolite network approach were compared. Any untargeted approach necessarily has some noise in the data owing to artifacts, outliers and misidentified metabolites. Depending on the chemical analytical choices (sample extraction, chromatography, instrument and settings, etc.), only a partial representation of all metabolites will be achieved, biased by both the analytical methods and the database used to identify the metabolites. Here, we show on the one hand that using a data analysis approach based exclusively on pathway annotations has the potential to miss much that is of interest and, in the case of misidentified metabolites, can produce perturbed pathways that are statistically significant yet uninformative for the biological sample at hand. On the other hand, a targeted approach, by narrowing its focus and minimizing (but not eliminating) misidentifications, renders the likelihood of a spurious pathway much smaller, but the limited number of metabolites also makes statistical significance harder to achieve. To avoid an analysis dependent on pathways, we built a de novo network using all metabolites that were different at 24 h with and without estrogen with a p value <0.01 (53) in the STITCH database, which links metabolites based on known reactions in the main metabolic network pathways but also based on experimental evidence and text mining. The resulting network contained a connected component of 43 metabolites and helped identify non-endogenous metabolites as well as pathways not visible by annotation-based approaches. Moreover, the most highly connected metabolites (energy metabolites such as pyruvate and alpha-ketoglutarate, as well as amino acids) showed only a modest change between proliferation with and without estrogen. Here, we demonstrate that estrogen has subtle but potentially phenotypically important alterations in the acyl-carnitine fatty acids, acetyl-putrescine and succinoadenosine, in addition to likely subtle changes in key energy metabolites that, however, could not be verified consistently given the technical limitations of this approach. Finally, we show that a network-based approach combined with text mining identifies pathways that would otherwise neither be considered statistically significant on their own nor be identified via ORA, QEA, or PA." @default.
- W2316215170 created "2016-06-24" @default.
- W2316215170 creator A5013042865 @default.
- W2316215170 creator A5027460680 @default.
- W2316215170 creator A5041022710 @default.
- W2316215170 creator A5050365273 @default.
- W2316215170 creator A5066531097 @default.
- W2316215170 creator A5089963590 @default.
- W2316215170 creator A5091124551 @default.
- W2316215170 date "2016-04-02" @default.
- W2316215170 modified "2023-09-27" @default.
- W2316215170 title "Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis" @default.
- W2316215170 cites W156766078 @default.
- W2316215170 cites W1957890676 @default.
- W2316215170 cites W1973153603 @default.
- W2316215170 cites W1975328793 @default.
- W2316215170 cites W1976327004 @default.
- W2316215170 cites W1979320999 @default.
- W2316215170 cites W1979615664 @default.
- W2316215170 cites W1982185581 @default.
- W2316215170 cites W1984029898 @default.
- W2316215170 cites W1985958957 @default.
- W2316215170 cites W1989299822 @default.
- W2316215170 cites W2007646009 @default.
- W2316215170 cites W2020230458 @default.
- W2316215170 cites W2027974246 @default.
- W2316215170 cites W2029891787 @default.
- W2316215170 cites W2070873509 @default.
- W2316215170 cites W2075109094 @default.
- W2316215170 cites W2089041399 @default.
- W2316215170 cites W2095860292 @default.
- W2316215170 cites W2102899487 @default.
- W2316215170 cites W2109770073 @default.
- W2316215170 cites W2118069309 @default.
- W2316215170 cites W2119412782 @default.
- W2316215170 cites W2131347449 @default.
- W2316215170 cites W2138702740 @default.
- W2316215170 cites W2145265944 @default.
- W2316215170 cites W2145427186 @default.
- W2316215170 cites W2155158051 @default.
- W2316215170 cites W2159482845 @default.
- W2316215170 cites W2159675211 @default.
- W2316215170 cites W2165340299 @default.
- W2316215170 cites W2165681080 @default.
- W2316215170 cites W2311691827 @default.
- W2316215170 cites W2313903357 @default.
- W2316215170 cites W2604816557 @default.
- W2316215170 cites W317382967 @default.
- W2316215170 cites W4231388594 @default.
- W2316215170 cites W4294216483 @default.
- W2316215170 doi "https://doi.org/10.1007/s00204-016-1695-x" @default.
- W2316215170 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5047848" @default.
- W2316215170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27039105" @default.
- W2316215170 hasPublicationYear "2016" @default.
- W2316215170 type Work @default.
- W2316215170 sameAs 2316215170 @default.
- W2316215170 citedByCount "11" @default.
- W2316215170 countsByYear W23162151702016 @default.
- W2316215170 countsByYear W23162151702017 @default.
- W2316215170 countsByYear W23162151702019 @default.
- W2316215170 countsByYear W23162151702020 @default.
- W2316215170 countsByYear W23162151702021 @default.
- W2316215170 countsByYear W23162151702022 @default.
- W2316215170 crossrefType "journal-article" @default.
- W2316215170 hasAuthorship W2316215170A5013042865 @default.
- W2316215170 hasAuthorship W2316215170A5027460680 @default.
- W2316215170 hasAuthorship W2316215170A5041022710 @default.
- W2316215170 hasAuthorship W2316215170A5050365273 @default.
- W2316215170 hasAuthorship W2316215170A5066531097 @default.
- W2316215170 hasAuthorship W2316215170A5089963590 @default.
- W2316215170 hasAuthorship W2316215170A5091124551 @default.
- W2316215170 hasBestOaLocation W23162151702 @default.
- W2316215170 hasConcept C104317684 @default.
- W2316215170 hasConcept C119857082 @default.
- W2316215170 hasConcept C121332964 @default.
- W2316215170 hasConcept C150194340 @default.
- W2316215170 hasConcept C151730666 @default.
- W2316215170 hasConcept C185592680 @default.
- W2316215170 hasConcept C192989942 @default.
- W2316215170 hasConcept C21565614 @default.
- W2316215170 hasConcept C2777477808 @default.
- W2316215170 hasConcept C2779230013 @default.
- W2316215170 hasConcept C2779343474 @default.
- W2316215170 hasConcept C32946077 @default.
- W2316215170 hasConcept C41008148 @default.
- W2316215170 hasConcept C55493867 @default.
- W2316215170 hasConcept C60644358 @default.
- W2316215170 hasConcept C62231903 @default.
- W2316215170 hasConcept C62520636 @default.
- W2316215170 hasConcept C70721500 @default.
- W2316215170 hasConcept C86803240 @default.
- W2316215170 hasConcept C97256817 @default.
- W2316215170 hasConceptScore W2316215170C104317684 @default.
- W2316215170 hasConceptScore W2316215170C119857082 @default.
- W2316215170 hasConceptScore W2316215170C121332964 @default.
- W2316215170 hasConceptScore W2316215170C150194340 @default.
- W2316215170 hasConceptScore W2316215170C151730666 @default.
- W2316215170 hasConceptScore W2316215170C185592680 @default.