Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316249142> ?p ?o ?g. }
- W2316249142 endingPage "6551" @default.
- W2316249142 startingPage "6538" @default.
- W2316249142 abstract "Selective bioclogging targets the biofilm growth in highly permeable zones of reservoirs or aquifers to divert water into low permeability zones. It alters the hydrodynamics of the subsurface flow systems to favorable performance conditions. Applications may include microbial-enhanced-hydrocarbon-recovery (MEHR) and bioremediation. Despite its success at the laboratory scale, application of bioclogging at the reservoir scale is hindered by the lack of understanding and advanced modeling and prediction tools. To understand controls of bioclogging processes at the reservoir scale, a Reactive Transport Model (RTM) has been developed in this work for in situ biostimulation of L. mesenteroides. This fermenting bacterium produces the biopolymer dextran in the presence of sucrose. As a first step, we considered the flow, transport, and bacterial growth and dextran production reactions in a single phase fluid (water) system, because most reactions occur either in the water phase or at the water–solid interface. Parameters for biomass growth and dextran production were obtained from column experimental data. The numerical experiments were carried out using the spatial distribution of porosity and permeability extracted from open-hole well logs collected at a characterization well near the King Island gas field in Southern Sacramento basin in California. The numerical experiments suggest that there exists an optimum range of injection rates (between 543 and 1,195 bbls/day). The volumetric injection rates need to be sufficiently fast to overcome microbial growth and clogging at the vicinity of the bore wells. They also need to be low enough to allow sufficiently long residence times for dextran production. Results show significant dextran formation and the associated porosity and permeability alterations to divert water into low permeability zones. The bioclogging effectiveness, measured by the percentage of the water diverted into the low permeability zones, varied between 10 to 75% depending on injection conditions. With the same total mass injection rates of sucrose, increasing flow rate is more effective in selectively bioclogging highly permeable zones than increasing sucrose concentration. Other processes, including the attachment of biomass to the solid surface without being washed out, are also important. The developed model offers a powerful tool to optimize injection conditions for effective bioclogging in naturally heterogeneous reservoirs." @default.
- W2316249142 created "2016-06-24" @default.
- W2316249142 creator A5008066607 @default.
- W2316249142 creator A5010621688 @default.
- W2316249142 creator A5014209482 @default.
- W2316249142 creator A5027475930 @default.
- W2316249142 creator A5061785448 @default.
- W2316249142 creator A5072522665 @default.
- W2316249142 date "2013-11-13" @default.
- W2316249142 modified "2023-10-16" @default.
- W2316249142 title "Bioclogging and Permeability Alteration by <i>L. mesenteroides</i> in a Sandstone Reservoir: A Reactive Transport Modeling Study" @default.
- W2316249142 cites W1973257386 @default.
- W2316249142 cites W1973923221 @default.
- W2316249142 cites W1974367035 @default.
- W2316249142 cites W1978146995 @default.
- W2316249142 cites W1989620598 @default.
- W2316249142 cites W1989708770 @default.
- W2316249142 cites W1993930401 @default.
- W2316249142 cites W1996276187 @default.
- W2316249142 cites W2003261770 @default.
- W2316249142 cites W2008173014 @default.
- W2316249142 cites W2011510649 @default.
- W2316249142 cites W2013331714 @default.
- W2316249142 cites W2020109631 @default.
- W2316249142 cites W2024219975 @default.
- W2316249142 cites W2025425505 @default.
- W2316249142 cites W2033662274 @default.
- W2316249142 cites W2034008347 @default.
- W2316249142 cites W2034138038 @default.
- W2316249142 cites W2039681925 @default.
- W2316249142 cites W2047389892 @default.
- W2316249142 cites W2054691855 @default.
- W2316249142 cites W2054912778 @default.
- W2316249142 cites W2055479126 @default.
- W2316249142 cites W2059467585 @default.
- W2316249142 cites W2063547066 @default.
- W2316249142 cites W2068273853 @default.
- W2316249142 cites W2072307384 @default.
- W2316249142 cites W2072742911 @default.
- W2316249142 cites W2078840775 @default.
- W2316249142 cites W2078916507 @default.
- W2316249142 cites W2079011352 @default.
- W2316249142 cites W2082350290 @default.
- W2316249142 cites W2087750803 @default.
- W2316249142 cites W2090512212 @default.
- W2316249142 cites W2096643552 @default.
- W2316249142 cites W2104031490 @default.
- W2316249142 cites W2106457792 @default.
- W2316249142 cites W2113571734 @default.
- W2316249142 cites W2114747625 @default.
- W2316249142 cites W2115000932 @default.
- W2316249142 cites W2118168060 @default.
- W2316249142 cites W21229488 @default.
- W2316249142 cites W2125905690 @default.
- W2316249142 cites W2129239774 @default.
- W2316249142 cites W2134408931 @default.
- W2316249142 cites W2136716264 @default.
- W2316249142 cites W2137505036 @default.
- W2316249142 cites W2137602777 @default.
- W2316249142 cites W2139587373 @default.
- W2316249142 cites W2151300149 @default.
- W2316249142 cites W2159973515 @default.
- W2316249142 cites W2166360720 @default.
- W2316249142 cites W2171974128 @default.
- W2316249142 cites W2318036417 @default.
- W2316249142 cites W2327057717 @default.
- W2316249142 cites W2327426496 @default.
- W2316249142 cites W2328535874 @default.
- W2316249142 cites W2332794273 @default.
- W2316249142 cites W2335498425 @default.
- W2316249142 cites W2614283331 @default.
- W2316249142 cites W2960776930 @default.
- W2316249142 cites W4245195082 @default.
- W2316249142 cites W4246032743 @default.
- W2316249142 cites W81747448 @default.
- W2316249142 doi "https://doi.org/10.1021/ef401446f" @default.
- W2316249142 hasPublicationYear "2013" @default.
- W2316249142 type Work @default.
- W2316249142 sameAs 2316249142 @default.
- W2316249142 citedByCount "30" @default.
- W2316249142 countsByYear W23162491422014 @default.
- W2316249142 countsByYear W23162491422015 @default.
- W2316249142 countsByYear W23162491422016 @default.
- W2316249142 countsByYear W23162491422017 @default.
- W2316249142 countsByYear W23162491422018 @default.
- W2316249142 countsByYear W23162491422019 @default.
- W2316249142 countsByYear W23162491422020 @default.
- W2316249142 countsByYear W23162491422021 @default.
- W2316249142 countsByYear W23162491422022 @default.
- W2316249142 countsByYear W23162491422023 @default.
- W2316249142 crossrefType "journal-article" @default.
- W2316249142 hasAuthorship W2316249142A5008066607 @default.
- W2316249142 hasAuthorship W2316249142A5010621688 @default.
- W2316249142 hasAuthorship W2316249142A5014209482 @default.
- W2316249142 hasAuthorship W2316249142A5027475930 @default.
- W2316249142 hasAuthorship W2316249142A5061785448 @default.
- W2316249142 hasAuthorship W2316249142A5072522665 @default.
- W2316249142 hasConcept C120882062 @default.