Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316253054> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2316253054 endingPage "87" @default.
- W2316253054 startingPage "87" @default.
- W2316253054 abstract "where ut is a random disturbance with zero mean. Koyck pointed out that subtracting Xyt-i from (1) produced the equation yt = A'+xyt_i+ bxt+ut' (2) where A' = A(1 -X) and ut' = ut -Xut1. Thus instead of being forced to deal with the model in its distributed lag form (1), which involves the seemingly intractable task of estimating a relation with an infinite number of explanatory variables from a finite amount of data, we can estimate the parameters of the autoregressive form of the model given in equation (2). However, this apparent simplification is purchased only at a cost, for consistent estimation of relation (2) requires that we face several estimation problems associated with equations in which lagged dependent variables appear as explanatory variables. While ordinary least squares estimates of the parameters of (2) are consistent provided that the disturbances ut' are serially independent and follow a distribution which satisfies the assumptions of the central limit theorem, even in this case a small sample bias exists. If the disturbances are serially dependent, an asymptotic bias exists.' Moreover, the transformation from (1) to (2) has changed both the variance and the serial correlations of the disturbances. Hence, if the disturbances in (1) are serially independent, those in (2) are necessarily autocorrelated, which means that applying least squares to equation (2) yields inconsistent estimates of the parameters. In addition to ordinary least squares (OLS), several techniques for estimating such distributed lag relations are available. Generally these techniques have been recommended on the basis of their desirable asymptotic properties. However, for economists, who are forced to work in a world where data are scarce, asymptotic properties are frequently of little relevance. What is more often required is knowledge of the properties of the estimators in small samples. Unfortunately, it has proved difficult to investigate these properties analytically. In the absence of such results, sampling or Monte Carlo experiments provide an alternative, if less elegant, source of information. Accordingly, this paper presents the results of a Monte Carlo study of several lag estimators under conditions in which the disturbances ut' of relation (2) are serially correlated. In addition to ordinary least squares, the following five methods were studied. 1) Two Stage Regression (TSLS): This is an application of Leviatan's instrumental variable approach. Leviatan [12] has suggested that xti1 be used as an instrument for yt-i in estimating relation (2). In order to increase the efficiency of the technique, we employed a linear combination of lagged x's as the instrument. The linear combination was determined by first estimating the equation" @default.
- W2316253054 created "2016-06-24" @default.
- W2316253054 creator A5002088217 @default.
- W2316253054 date "1968-02-01" @default.
- W2316253054 modified "2023-10-12" @default.
- W2316253054 title "Some Evidence on the Small Sample Properties of Distributed Lag Estimators in the Presence of Autocorrelated Disturbances" @default.
- W2316253054 cites W1976946136 @default.
- W2316253054 cites W2012684567 @default.
- W2316253054 cites W2017887707 @default.
- W2316253054 cites W2086985608 @default.
- W2316253054 cites W2237470443 @default.
- W2316253054 cites W2314909880 @default.
- W2316253054 cites W2317215661 @default.
- W2316253054 cites W2329480876 @default.
- W2316253054 cites W2335567652 @default.
- W2316253054 cites W3125188797 @default.
- W2316253054 cites W3212843175 @default.
- W2316253054 doi "https://doi.org/10.2307/1927059" @default.
- W2316253054 hasPublicationYear "1968" @default.
- W2316253054 type Work @default.
- W2316253054 sameAs 2316253054 @default.
- W2316253054 citedByCount "19" @default.
- W2316253054 countsByYear W23162530542013 @default.
- W2316253054 countsByYear W23162530542014 @default.
- W2316253054 countsByYear W23162530542015 @default.
- W2316253054 countsByYear W23162530542016 @default.
- W2316253054 countsByYear W23162530542017 @default.
- W2316253054 crossrefType "journal-article" @default.
- W2316253054 hasAuthorship W2316253054A5002088217 @default.
- W2316253054 hasConcept C105795698 @default.
- W2316253054 hasConcept C121332964 @default.
- W2316253054 hasConcept C149782125 @default.
- W2316253054 hasConcept C159009313 @default.
- W2316253054 hasConcept C162324750 @default.
- W2316253054 hasConcept C185429906 @default.
- W2316253054 hasConcept C198531522 @default.
- W2316253054 hasConcept C31258907 @default.
- W2316253054 hasConcept C33923547 @default.
- W2316253054 hasConcept C41008148 @default.
- W2316253054 hasConcept C5297727 @default.
- W2316253054 hasConcept C75778745 @default.
- W2316253054 hasConcept C97355855 @default.
- W2316253054 hasConceptScore W2316253054C105795698 @default.
- W2316253054 hasConceptScore W2316253054C121332964 @default.
- W2316253054 hasConceptScore W2316253054C149782125 @default.
- W2316253054 hasConceptScore W2316253054C159009313 @default.
- W2316253054 hasConceptScore W2316253054C162324750 @default.
- W2316253054 hasConceptScore W2316253054C185429906 @default.
- W2316253054 hasConceptScore W2316253054C198531522 @default.
- W2316253054 hasConceptScore W2316253054C31258907 @default.
- W2316253054 hasConceptScore W2316253054C33923547 @default.
- W2316253054 hasConceptScore W2316253054C41008148 @default.
- W2316253054 hasConceptScore W2316253054C5297727 @default.
- W2316253054 hasConceptScore W2316253054C75778745 @default.
- W2316253054 hasConceptScore W2316253054C97355855 @default.
- W2316253054 hasIssue "1" @default.
- W2316253054 hasLocation W23162530541 @default.
- W2316253054 hasOpenAccess W2316253054 @default.
- W2316253054 hasPrimaryLocation W23162530541 @default.
- W2316253054 hasRelatedWork W1980969581 @default.
- W2316253054 hasRelatedWork W1985464957 @default.
- W2316253054 hasRelatedWork W1985817850 @default.
- W2316253054 hasRelatedWork W2120633375 @default.
- W2316253054 hasRelatedWork W2287367355 @default.
- W2316253054 hasRelatedWork W3125055485 @default.
- W2316253054 hasRelatedWork W3188065745 @default.
- W2316253054 hasRelatedWork W3201253351 @default.
- W2316253054 hasRelatedWork W803623779 @default.
- W2316253054 hasRelatedWork W2508755520 @default.
- W2316253054 hasVolume "50" @default.
- W2316253054 isParatext "false" @default.
- W2316253054 isRetracted "false" @default.
- W2316253054 magId "2316253054" @default.
- W2316253054 workType "article" @default.