Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316263033> ?p ?o ?g. }
- W2316263033 endingPage "1945" @default.
- W2316263033 startingPage "1936" @default.
- W2316263033 abstract "A surface plasmon is the coherent oscillation of the conduction band electrons. When a metal nanoparticle is excited to produce surface plasmons, incident light is both scattered and absorbed, giving rise to brilliant colors. One available technique for measuring these processes, ensemble extinction spectroscopy, only measures the sum of scattering and absorption. Although the spectral responses of these processes are closely related, their relative efficiencies can differ significantly as a function of nanoparticle size and shape. For some applications, researchers may need techniques that can quantitatively measure absorption or scattering alone. Through advances in single particle spectroscopy, researchers can overcome this problem, separately determining the radiative (elastic and inelastic scattering) and nonradiative (absorption) properties of surface plasmons. Furthermore, because we can use the same sample preparation for both single particle spectroscopy measurements and electron microscopy, this technique provides detailed structural information and a direct correlation between optical properties and nanostructure morphology.In this Account, we present our quantitative investigations of both radiative (scattering and one-photon luminescence) and nonradiative (absorption) properties of the same individual plasmonic nanostructures employing different single particle spectroscopy techniques. In particular, we have used a combined setup to study the same structure with dark-field scattering spectroscopy, photothermal heterodyne imaging, confocal luminescence microscopy, and scanning electron microscopy. While Mie theory thoroughly describes the overall size dependence of scattering and absorption for nanospheres, our real samples deviate significantly from the predicted trend: their particle shape is not perfectly spherical, especially when supported on a substrate. Because of the high excitation rate in laser based single particle measurements, we can efficiently detect one-photon luminescence despite a low quantum yield. For gold nanoparticles, the luminescence spectrum follows the scattering response, and therefore we assigned it to the emission of a plasmon. Due to strong near-field interactions the plasmonic response of closely spaced nanoparticles deviates significantly from that of the constituent nanoparticles. This response arises from coupled surface plasmon modes that combine those of the individual nanoparticles. Our correlated structural and optical imaging strategy is especially powerful for understanding these collective modes and their dependence on the assembly geometry." @default.
- W2316263033 created "2016-06-24" @default.
- W2316263033 creator A5009551001 @default.
- W2316263033 creator A5018655723 @default.
- W2316263033 creator A5024800825 @default.
- W2316263033 creator A5058166977 @default.
- W2316263033 creator A5082622920 @default.
- W2316263033 creator A5089444908 @default.
- W2316263033 date "2012-04-18" @default.
- W2316263033 modified "2023-09-30" @default.
- W2316263033 title "Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies" @default.
- W2316263033 cites W1556801875 @default.
- W2316263033 cites W1967508074 @default.
- W2316263033 cites W1967689127 @default.
- W2316263033 cites W1969880182 @default.
- W2316263033 cites W1970060347 @default.
- W2316263033 cites W1970456480 @default.
- W2316263033 cites W1975085644 @default.
- W2316263033 cites W1981686267 @default.
- W2316263033 cites W1983878296 @default.
- W2316263033 cites W1990815170 @default.
- W2316263033 cites W1992878097 @default.
- W2316263033 cites W1993343079 @default.
- W2316263033 cites W1996487727 @default.
- W2316263033 cites W2001921903 @default.
- W2316263033 cites W2009166473 @default.
- W2316263033 cites W2015877251 @default.
- W2316263033 cites W2016435465 @default.
- W2316263033 cites W2020343586 @default.
- W2316263033 cites W2041374940 @default.
- W2316263033 cites W2045276693 @default.
- W2316263033 cites W2050993261 @default.
- W2316263033 cites W2051168659 @default.
- W2316263033 cites W2051680216 @default.
- W2316263033 cites W2052566608 @default.
- W2316263033 cites W2071003365 @default.
- W2316263033 cites W2071224672 @default.
- W2316263033 cites W2075500597 @default.
- W2316263033 cites W2078283054 @default.
- W2316263033 cites W2080376276 @default.
- W2316263033 cites W2086696748 @default.
- W2316263033 cites W2087702183 @default.
- W2316263033 cites W2090964142 @default.
- W2316263033 cites W2092492380 @default.
- W2316263033 cites W2113125756 @default.
- W2316263033 cites W2118679347 @default.
- W2316263033 cites W2122932285 @default.
- W2316263033 cites W2127902738 @default.
- W2316263033 cites W2128251599 @default.
- W2316263033 cites W2133273504 @default.
- W2316263033 cites W2147270199 @default.
- W2316263033 cites W2149767496 @default.
- W2316263033 cites W2153642324 @default.
- W2316263033 cites W2156092660 @default.
- W2316263033 cites W2166408753 @default.
- W2316263033 cites W2171725933 @default.
- W2316263033 cites W2206485707 @default.
- W2316263033 cites W2329202781 @default.
- W2316263033 cites W2332296692 @default.
- W2316263033 cites W4296862 @default.
- W2316263033 doi "https://doi.org/10.1021/ar200337u" @default.
- W2316263033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22512668" @default.
- W2316263033 hasPublicationYear "2012" @default.
- W2316263033 type Work @default.
- W2316263033 sameAs 2316263033 @default.
- W2316263033 citedByCount "62" @default.
- W2316263033 countsByYear W23162630332012 @default.
- W2316263033 countsByYear W23162630332013 @default.
- W2316263033 countsByYear W23162630332014 @default.
- W2316263033 countsByYear W23162630332015 @default.
- W2316263033 countsByYear W23162630332016 @default.
- W2316263033 countsByYear W23162630332017 @default.
- W2316263033 countsByYear W23162630332018 @default.
- W2316263033 countsByYear W23162630332019 @default.
- W2316263033 countsByYear W23162630332020 @default.
- W2316263033 countsByYear W23162630332021 @default.
- W2316263033 countsByYear W23162630332022 @default.
- W2316263033 countsByYear W23162630332023 @default.
- W2316263033 crossrefType "journal-article" @default.
- W2316263033 hasAuthorship W2316263033A5009551001 @default.
- W2316263033 hasAuthorship W2316263033A5018655723 @default.
- W2316263033 hasAuthorship W2316263033A5024800825 @default.
- W2316263033 hasAuthorship W2316263033A5058166977 @default.
- W2316263033 hasAuthorship W2316263033A5082622920 @default.
- W2316263033 hasAuthorship W2316263033A5089444908 @default.
- W2316263033 hasConcept C110879396 @default.
- W2316263033 hasConcept C120665830 @default.
- W2316263033 hasConcept C121332964 @default.
- W2316263033 hasConcept C125287762 @default.
- W2316263033 hasConcept C136676167 @default.
- W2316263033 hasConcept C185592680 @default.
- W2316263033 hasConcept C191486275 @default.
- W2316263033 hasConcept C192562407 @default.
- W2316263033 hasConcept C32891209 @default.
- W2316263033 hasConcept C41999313 @default.
- W2316263033 hasConcept C49040817 @default.
- W2316263033 hasConcept C62520636 @default.
- W2316263033 hasConcept C74902906 @default.