Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316285318> ?p ?o ?g. }
- W2316285318 endingPage "1000" @default.
- W2316285318 startingPage "997" @default.
- W2316285318 abstract "At present, mammalian caspases comprise a group of at least 13 protease members which either generate mature pro-inflammatory cytokines or promote apoptosis (Cohen, 1997; Nicholson and Thornberry, 1997; Van de Craen et al, 1997; Humke et al, 1998; Schulze-Osthoff et al, 1998). Based on phylogenetic analysis and positional scanning studies of their peptide substrates, caspases can be divided into three subfamilies: The ICE-like protease family includes caspase-1, -4, -5 and -13 as well as murine caspase-11 and -12, for which no human equivalents have yet been identified. The Ced-3 subfamily includes caspase-3, -6, -7, -8, -9 and -10, whereas the third subfamily consists of only one member, caspase-2. Within each subfamily, the peptide sequence preferences in the substrates are remarkably similar or even identical. This demonstrates that, at least in some cases, different caspases can cleave the same substrates, suggesting some degree of functional redundancy within the caspase family. Central to the understanding of the molecular mechanism of cell death is the identification of caspase targets and the elucidation of the consequences of proteolytic cleavage. Thus far, more than 60 proteins have been found to be cleaved by caspases, and new substrates are continuously being identified (Table 1). Given the great number of different caspases, the list of substrates is still relatively small. For most proteins, the consequences of cleavage are poorly understood. In a few cases, however, proteolysis of certain components can be linked to discrete morphological changes of cell death. Which requirements should an apoptosis-relevant caspase substrate meet? Because apoptosis is an ordered sequence of rather stereotypical alterations in every cell type, one would predict that caspase substrates should be ubiquitously expressed and evolutionary conserved, at least in their aspartate cleavage site. The known substrates of caspases can be loosely categorized into a few functional groups including proteins involved in scaffolding of the cytoplasm and cell nucleus, signal transduction and transcription-regulatory proteins, cell-cycle controlling components and proteins involved in DNA replication and repair. In addition, activation of members of the first subfamily of caspases, caspase-1 and presumably caspase-4 and -5, results in the processing of cytokine precursors, which are presumably not directly involved in cell death. While some substrates are functionally inactivated upon caspase-mediated cleavage, other proteins and enzymes can be activated, mostly by cleavage of an inhibitory or regulatory domain within the caspase target. In most cases the physiological consequence of this gain-of-function cleavage for apoptosis remains unclear. Caspasemediated cleavage should result in different net effects: (i) a halt of cell cycle progression, (ii) disabling of repair mechanisms, (iii) disassembly of molecular structures, (iv) cell detachment, and (v) tagging of the apoptotic cell for engulfment by phagocytes. A number of structural proteins in the cell nucleus and cytoplasm have been identified to be cleaved by caspases, such as actin, fodrin, catenins, keratins, Gas2 and lamins (for references see Cohen, 1997; Nicholson and Thornberry, 1997; Porter et al, 1997; Tan and Wang, 1998; Cryns and Yuan, 1998). Degradation of lamin B which is predominantly mediated by caspase-6 may lead to the disassembly of the nuclear envelope and the final collapse of the cell nucleus (Rao et al, 1996). In contrast, cleavage of gelsolin, a cytoplasmic actin-severing protein, may contribute to membrane blebbing and other morphological features of the apoptotic phenotype. Gelsolin is cleaved by caspase-3 to generate a constitutively active fragment that can depolymerize F-actin (Kothakota et al, 1997). Interestingly, gelsolin-deficient cells show a strong delay in membrane blebbing when exposed to apoptotic stimuli. It has been also reported that actin can be directly cleaved by caspases in pheochromocytoma and ovarian carcinoma cells (Kayalar et al, 1996; Chen et al, 1996), whereas in many other cell types no cleavage could be detected (Song et al, 1997). Thus, it is possible that certain protein cleavages may be cell typespecific which may also due to variations in the expression of individual caspases in different cell types. Activation of caspases may be not only required for destruction of the cell's architecture, but also necessary for the detachment and clearance of an apoptotic cell from the embedding tissue. Indeed, some caspase substrates participate in cell adhesion, such as b-catenin, plakoglobin and focal adhesion kinase (Brancolini et al, 1997; 1998; Herren et al, 1998; Crouch et al, 1996; Levkau et al, 1998a). A strikingly large number of caspase targets are involved in cell cycle regulation and DNA repair mechanisms. One of the first death substrates found to be cleaved by caspases was poly(ADP-ribose)polymerase (PARP), which catalyzes the transfer of ADP-ribose polymers to nuclear proteins (Tewari et al, 1995). As DNA strand breaks activate the enzyme, PARP has been proposed to trigger DNA damageinduced apoptosis by depleting NAD stores. On the other hand, due to its role in DNA repair, cleavage of PARP may Cell Death and Differentiation (1998) 5, 997 ± 1000 a 1998 Stockton Press All rights reserved 13509047/98 $12.00" @default.
- W2316285318 created "2016-06-24" @default.
- W2316285318 creator A5021088641 @default.
- W2316285318 creator A5074047222 @default.
- W2316285318 date "1998-12-01" @default.
- W2316285318 modified "2023-10-15" @default.
- W2316285318 title "Death by a thousand cuts: an ever increasing list of caspase substrates" @default.
- W2316285318 cites W1485472095 @default.
- W2316285318 cites W1546320160 @default.
- W2316285318 cites W1815535913 @default.
- W2316285318 cites W1845459216 @default.
- W2316285318 cites W1942214720 @default.
- W2316285318 cites W1988110501 @default.
- W2316285318 cites W1989689694 @default.
- W2316285318 cites W1994162083 @default.
- W2316285318 cites W1996180957 @default.
- W2316285318 cites W1996231989 @default.
- W2316285318 cites W2003486839 @default.
- W2316285318 cites W2012173926 @default.
- W2316285318 cites W2023813445 @default.
- W2316285318 cites W2025937855 @default.
- W2316285318 cites W2029962841 @default.
- W2316285318 cites W2032853143 @default.
- W2316285318 cites W2038114873 @default.
- W2316285318 cites W2044030703 @default.
- W2316285318 cites W2048666761 @default.
- W2316285318 cites W2049110705 @default.
- W2316285318 cites W2052759051 @default.
- W2316285318 cites W2062853648 @default.
- W2316285318 cites W2065040885 @default.
- W2316285318 cites W2072502723 @default.
- W2316285318 cites W2073578569 @default.
- W2316285318 cites W2074678011 @default.
- W2316285318 cites W2076398093 @default.
- W2316285318 cites W2078001244 @default.
- W2316285318 cites W2082259697 @default.
- W2316285318 cites W2091619297 @default.
- W2316285318 cites W2092759765 @default.
- W2316285318 cites W2098160574 @default.
- W2316285318 cites W2103626309 @default.
- W2316285318 cites W2105428498 @default.
- W2316285318 cites W2106348762 @default.
- W2316285318 cites W2117743516 @default.
- W2316285318 cites W2120939161 @default.
- W2316285318 cites W2137835644 @default.
- W2316285318 cites W2140954151 @default.
- W2316285318 cites W2155429403 @default.
- W2316285318 cites W2155611139 @default.
- W2316285318 cites W2161968975 @default.
- W2316285318 cites W2165721689 @default.
- W2316285318 cites W2171483351 @default.
- W2316285318 cites W2209259861 @default.
- W2316285318 cites W2316309422 @default.
- W2316285318 cites W2318380017 @default.
- W2316285318 cites W2319382059 @default.
- W2316285318 cites W2321219761 @default.
- W2316285318 cites W2330982448 @default.
- W2316285318 cites W2439819887 @default.
- W2316285318 doi "https://doi.org/10.1038/sj.cdd.4400451" @default.
- W2316285318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9894605" @default.
- W2316285318 hasPublicationYear "1998" @default.
- W2316285318 type Work @default.
- W2316285318 sameAs 2316285318 @default.
- W2316285318 citedByCount "276" @default.
- W2316285318 countsByYear W23162853182012 @default.
- W2316285318 countsByYear W23162853182013 @default.
- W2316285318 countsByYear W23162853182014 @default.
- W2316285318 countsByYear W23162853182015 @default.
- W2316285318 countsByYear W23162853182016 @default.
- W2316285318 countsByYear W23162853182017 @default.
- W2316285318 countsByYear W23162853182018 @default.
- W2316285318 countsByYear W23162853182019 @default.
- W2316285318 countsByYear W23162853182020 @default.
- W2316285318 countsByYear W23162853182021 @default.
- W2316285318 countsByYear W23162853182022 @default.
- W2316285318 countsByYear W23162853182023 @default.
- W2316285318 crossrefType "journal-article" @default.
- W2316285318 hasAuthorship W2316285318A5021088641 @default.
- W2316285318 hasAuthorship W2316285318A5074047222 @default.
- W2316285318 hasBestOaLocation W23162853181 @default.
- W2316285318 hasConcept C190283241 @default.
- W2316285318 hasConcept C31573885 @default.
- W2316285318 hasConcept C54355233 @default.
- W2316285318 hasConcept C70721500 @default.
- W2316285318 hasConcept C86803240 @default.
- W2316285318 hasConcept C98424977 @default.
- W2316285318 hasConceptScore W2316285318C190283241 @default.
- W2316285318 hasConceptScore W2316285318C31573885 @default.
- W2316285318 hasConceptScore W2316285318C54355233 @default.
- W2316285318 hasConceptScore W2316285318C70721500 @default.
- W2316285318 hasConceptScore W2316285318C86803240 @default.
- W2316285318 hasConceptScore W2316285318C98424977 @default.
- W2316285318 hasIssue "12" @default.
- W2316285318 hasLocation W23162853181 @default.
- W2316285318 hasLocation W23162853182 @default.
- W2316285318 hasOpenAccess W2316285318 @default.
- W2316285318 hasPrimaryLocation W23162853181 @default.
- W2316285318 hasRelatedWork W1670069535 @default.