Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316356223> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2316356223 endingPage "40" @default.
- W2316356223 startingPage "34" @default.
- W2316356223 abstract "Post third generation (3G) broadband mobile networks such as HSPA+, LTE and LTE-Advanced offer improved spectral efficiency and higher data rates using innovative technologies such as relay nodes and femto cells. In addition, these networks are normally deployed for parallel operation with existing heterogeneous networks. This increases the complexity of network management and operations, which reflects in higher operational and capital cost. In order to address these challenges, self-organizing network operations were envisioned for these next generation networks. For LTE in particular, Self-organizing networks operations were built into the specifications for the radio access network. Load balancing is a key self-organizing operation aimed at ensuring an equitable distribution of users in the network. Several iterative techniques have been adopted for load balancing. However, these iterative techniques require precision, rigor and certainty, which carry a computational cost. Retrospect, these techniques use load indicators to achieve load balancing. This paper proposes two neural encoded fuzzy models, developed from network simulation for load balancing. The two models use both load indicators and key performance indicators for a more informed and intuitive load balancing. The result of the model checking and testing satisfactorily validates the model. General Terms Access Network, Broadband, Models, Soft computing Wireless communication." @default.
- W2316356223 created "2016-06-24" @default.
- W2316356223 creator A5006954772 @default.
- W2316356223 creator A5029073059 @default.
- W2316356223 creator A5062245280 @default.
- W2316356223 date "2012-09-12" @default.
- W2316356223 modified "2023-10-14" @default.
- W2316356223 title "Neural-encoded Fuzzy Models for Load Balancing in 3GPP LTE" @default.
- W2316356223 cites W1479852562 @default.
- W2316356223 cites W1490674876 @default.
- W2316356223 cites W1557525263 @default.
- W2316356223 cites W1630733292 @default.
- W2316356223 cites W1975367449 @default.
- W2316356223 cites W2009867565 @default.
- W2316356223 cites W2049034580 @default.
- W2316356223 cites W2074215173 @default.
- W2316356223 cites W2092769608 @default.
- W2316356223 cites W2114225079 @default.
- W2316356223 cites W2120041039 @default.
- W2316356223 cites W2122496159 @default.
- W2316356223 cites W2132705837 @default.
- W2316356223 cites W2141951369 @default.
- W2316356223 cites W2147773055 @default.
- W2316356223 cites W2762734597 @default.
- W2316356223 cites W602756159 @default.
- W2316356223 cites W2185811450 @default.
- W2316356223 doi "https://doi.org/10.5120/ijais12-450628" @default.
- W2316356223 hasPublicationYear "2012" @default.
- W2316356223 type Work @default.
- W2316356223 sameAs 2316356223 @default.
- W2316356223 citedByCount "5" @default.
- W2316356223 countsByYear W23163562232014 @default.
- W2316356223 countsByYear W23163562232015 @default.
- W2316356223 countsByYear W23163562232020 @default.
- W2316356223 countsByYear W23163562232023 @default.
- W2316356223 crossrefType "journal-article" @default.
- W2316356223 hasAuthorship W2316356223A5006954772 @default.
- W2316356223 hasAuthorship W2316356223A5029073059 @default.
- W2316356223 hasAuthorship W2316356223A5062245280 @default.
- W2316356223 hasBestOaLocation W23163562231 @default.
- W2316356223 hasConcept C154945302 @default.
- W2316356223 hasConcept C41008148 @default.
- W2316356223 hasConcept C58166 @default.
- W2316356223 hasConceptScore W2316356223C154945302 @default.
- W2316356223 hasConceptScore W2316356223C41008148 @default.
- W2316356223 hasConceptScore W2316356223C58166 @default.
- W2316356223 hasIssue "1" @default.
- W2316356223 hasLocation W23163562231 @default.
- W2316356223 hasLocation W23163562232 @default.
- W2316356223 hasLocation W23163562233 @default.
- W2316356223 hasOpenAccess W2316356223 @default.
- W2316356223 hasPrimaryLocation W23163562231 @default.
- W2316356223 hasRelatedWork W2093578348 @default.
- W2316356223 hasRelatedWork W2358668433 @default.
- W2316356223 hasRelatedWork W2376932109 @default.
- W2316356223 hasRelatedWork W2382290278 @default.
- W2316356223 hasRelatedWork W2390279801 @default.
- W2316356223 hasRelatedWork W2738546080 @default.
- W2316356223 hasRelatedWork W2748952813 @default.
- W2316356223 hasRelatedWork W2766271392 @default.
- W2316356223 hasRelatedWork W2899084033 @default.
- W2316356223 hasRelatedWork W3107474891 @default.
- W2316356223 hasVolume "4" @default.
- W2316356223 isParatext "false" @default.
- W2316356223 isRetracted "false" @default.
- W2316356223 magId "2316356223" @default.
- W2316356223 workType "article" @default.