Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316456783> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2316456783 endingPage "1108" @default.
- W2316456783 startingPage "1097" @default.
- W2316456783 abstract "Abstract We consider the temporal evolution of an isolated system of N particles from a non-equilibrium state of entropy S = S ′ to the equilibrium state of maximum entropy, S = S max , S ′ ≤ S max . The application of usual density matrix theory to the temporal development of S leads us to d S /d t = 0: The entropy S does not change in time t . Thereby it is irrelevant, whether we consider a non-equilibrium state or an equilibrium state. Consequently, the system cannot irreversibly change by entropy production d S /d t > 0 from S ′ to S max . This is a paradoxial result, which contradicts the experience. It can be traced back to the von Neumann equation, which in principle describes reversible processes and hence is unsuitable for calculating the irreversible evolution of the entropy S in time t . Each irreversible process is accompanied by a positive entropy production P = d S /d t ≥ 0 inside the system, which only vanishes in case of the equilibrium state. In order to overcome the above mentioned difficulties, we assign an operator P to the entropy production P , which is defined by the eigenvalue equation P | u 〉 = P | u 〉 with the state vector | u 〉 of the N -particle system. There was an extensive discussion about the relation between the production of entropy P on one hand and the progression of time t on the other. Making use of this concept, we combine the operator of entropy production P with the time-development operator U ( t , t 0 ) of the system and finally deduce the infinitesimal unitary operator U ( t +τ, t ) = 1 + ( i / k )τ P by means of very general assumptions. Here P means the generator of the infinitesimal progression of time τ = t − t 0 and k the Boltzmann constant, representing the atomic entropy unit. Similarly to P we also treat the time t as an observable, defined by t | u 〉 = t | u 〉. We apply the infinitesimal time-evolution operator U ( t +τ, t ) to the operator of time t and finally obtain the P – t commutation relation i [ P , t ] = k , which is independent of τ. It shows that the operators P and t do not commute, and hence P and t are not sharply defined simultaneously. Instead we have uncertainties Δ P and Δ t on measuring P and t , which are given by the P – t uncertainty relation Δ P Δ t ≥ k /2. It readily allows a discussion of the evolution of the entropy S of the isolated system in time t from S ′ to S max . Now, the irreversible steps are correctly described by the entropy production P = d S /d t > 0, while the thermal equilibrium is given by P = 0, Δ P = 0, and thus the lifetime of the equilibrium state Δ t = ∞. According to the P – t uncertainty relation, the Boltzmann constant k is similarly important to the quantum thermodynamics of irreversible processes like Planck′s constant h to usual quantum mechanics." @default.
- W2316456783 created "2016-06-24" @default.
- W2316456783 creator A5069870288 @default.
- W2316456783 date "2003-09-01" @default.
- W2316456783 modified "2023-09-26" @default.
- W2316456783 title "Particle Entropies and Entropy Quanta V. The <i>P</i>–<i>t</i> Uncertainty Relation" @default.
- W2316456783 cites W1995763641 @default.
- W2316456783 cites W2058239431 @default.
- W2316456783 cites W2090099030 @default.
- W2316456783 cites W2319220654 @default.
- W2316456783 cites W2320831354 @default.
- W2316456783 cites W2330913477 @default.
- W2316456783 doi "https://doi.org/10.1524/zpch.217.9.1097.20410" @default.
- W2316456783 hasPublicationYear "2003" @default.
- W2316456783 type Work @default.
- W2316456783 sameAs 2316456783 @default.
- W2316456783 citedByCount "1" @default.
- W2316456783 countsByYear W23164567832022 @default.
- W2316456783 crossrefType "journal-article" @default.
- W2316456783 hasAuthorship W2316456783A5069870288 @default.
- W2316456783 hasConcept C101973423 @default.
- W2316456783 hasConcept C104317684 @default.
- W2316456783 hasConcept C105795698 @default.
- W2316456783 hasConcept C106301342 @default.
- W2316456783 hasConcept C111919701 @default.
- W2316456783 hasConcept C121040770 @default.
- W2316456783 hasConcept C121332964 @default.
- W2316456783 hasConcept C121864883 @default.
- W2316456783 hasConcept C125252325 @default.
- W2316456783 hasConcept C139356082 @default.
- W2316456783 hasConcept C158448853 @default.
- W2316456783 hasConcept C17020691 @default.
- W2316456783 hasConcept C179003449 @default.
- W2316456783 hasConcept C185592680 @default.
- W2316456783 hasConcept C207282930 @default.
- W2316456783 hasConcept C24495805 @default.
- W2316456783 hasConcept C33923547 @default.
- W2316456783 hasConcept C37914503 @default.
- W2316456783 hasConcept C41008148 @default.
- W2316456783 hasConcept C42047476 @default.
- W2316456783 hasConcept C49775889 @default.
- W2316456783 hasConcept C55493867 @default.
- W2316456783 hasConcept C56911000 @default.
- W2316456783 hasConcept C60507348 @default.
- W2316456783 hasConcept C62520636 @default.
- W2316456783 hasConcept C84114770 @default.
- W2316456783 hasConcept C86339819 @default.
- W2316456783 hasConcept C9679016 @default.
- W2316456783 hasConcept C97355855 @default.
- W2316456783 hasConceptScore W2316456783C101973423 @default.
- W2316456783 hasConceptScore W2316456783C104317684 @default.
- W2316456783 hasConceptScore W2316456783C105795698 @default.
- W2316456783 hasConceptScore W2316456783C106301342 @default.
- W2316456783 hasConceptScore W2316456783C111919701 @default.
- W2316456783 hasConceptScore W2316456783C121040770 @default.
- W2316456783 hasConceptScore W2316456783C121332964 @default.
- W2316456783 hasConceptScore W2316456783C121864883 @default.
- W2316456783 hasConceptScore W2316456783C125252325 @default.
- W2316456783 hasConceptScore W2316456783C139356082 @default.
- W2316456783 hasConceptScore W2316456783C158448853 @default.
- W2316456783 hasConceptScore W2316456783C17020691 @default.
- W2316456783 hasConceptScore W2316456783C179003449 @default.
- W2316456783 hasConceptScore W2316456783C185592680 @default.
- W2316456783 hasConceptScore W2316456783C207282930 @default.
- W2316456783 hasConceptScore W2316456783C24495805 @default.
- W2316456783 hasConceptScore W2316456783C33923547 @default.
- W2316456783 hasConceptScore W2316456783C37914503 @default.
- W2316456783 hasConceptScore W2316456783C41008148 @default.
- W2316456783 hasConceptScore W2316456783C42047476 @default.
- W2316456783 hasConceptScore W2316456783C49775889 @default.
- W2316456783 hasConceptScore W2316456783C55493867 @default.
- W2316456783 hasConceptScore W2316456783C56911000 @default.
- W2316456783 hasConceptScore W2316456783C60507348 @default.
- W2316456783 hasConceptScore W2316456783C62520636 @default.
- W2316456783 hasConceptScore W2316456783C84114770 @default.
- W2316456783 hasConceptScore W2316456783C86339819 @default.
- W2316456783 hasConceptScore W2316456783C9679016 @default.
- W2316456783 hasConceptScore W2316456783C97355855 @default.
- W2316456783 hasIssue "9" @default.
- W2316456783 hasLocation W23164567831 @default.
- W2316456783 hasOpenAccess W2316456783 @default.
- W2316456783 hasPrimaryLocation W23164567831 @default.
- W2316456783 hasRelatedWork W1590221335 @default.
- W2316456783 hasRelatedWork W1986427992 @default.
- W2316456783 hasRelatedWork W1999548667 @default.
- W2316456783 hasRelatedWork W2010183870 @default.
- W2316456783 hasRelatedWork W2012183338 @default.
- W2316456783 hasRelatedWork W2088584583 @default.
- W2316456783 hasRelatedWork W2092814302 @default.
- W2316456783 hasRelatedWork W218595706 @default.
- W2316456783 hasRelatedWork W2316456783 @default.
- W2316456783 hasRelatedWork W3206579266 @default.
- W2316456783 hasVolume "217" @default.
- W2316456783 isParatext "false" @default.
- W2316456783 isRetracted "false" @default.
- W2316456783 magId "2316456783" @default.
- W2316456783 workType "article" @default.