Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316653816> ?p ?o ?g. }
- W2316653816 endingPage "1215" @default.
- W2316653816 startingPage "1206" @default.
- W2316653816 abstract "Global optimization is a long-lasting research topic in the field of optimization, posting many challenging theoretic and computational issues. This paper presents a novel collective neurodynamic method for solving constrained global optimization problems. At first, a one-layer recurrent neural network (RNN) is presented for searching the Karush-Kuhn-Tucker points of the optimization problem under study. Next, a collective neuroydnamic optimization approach is developed by emulating the paradigm of brainstorming. Multiple RNNs are exploited cooperatively to search for the global optimal solutions in a framework of particle swarm optimization. Each RNN carries out a precise local search and converges to a candidate solution according to its own neurodynamics. The neuronal state of each neural network is repetitively reset by exchanging historical information of each individual network and the entire group. Wavelet mutation is performed to avoid prematurity, add diversity, and promote global convergence. It is proved in the framework of stochastic optimization that the proposed collective neurodynamic approach is capable of computing the global optimal solutions with probability one provided that a sufficiently large number of neural networks are utilized. The essence of the collective neurodynamic optimization approach lies in its potential to solve constrained global optimization problems in real time. The effectiveness and characteristics of the proposed approach are illustrated by using benchmark optimization problems." @default.
- W2316653816 created "2016-06-24" @default.
- W2316653816 creator A5036595620 @default.
- W2316653816 creator A5044406254 @default.
- W2316653816 creator A5089754208 @default.
- W2316653816 date "2017-05-01" @default.
- W2316653816 modified "2023-10-16" @default.
- W2316653816 title "A Collective Neurodynamic Approach to Constrained Global Optimization" @default.
- W2316653816 cites W1983001233 @default.
- W2316653816 cites W1988901237 @default.
- W2316653816 cites W1991832796 @default.
- W2316653816 cites W1998391576 @default.
- W2316653816 cites W2005122474 @default.
- W2316653816 cites W2038659300 @default.
- W2316653816 cites W2056625347 @default.
- W2316653816 cites W2067811671 @default.
- W2316653816 cites W2071284784 @default.
- W2316653816 cites W2108070111 @default.
- W2316653816 cites W2108379813 @default.
- W2316653816 cites W2109364787 @default.
- W2316653816 cites W2111986387 @default.
- W2316653816 cites W2118204568 @default.
- W2316653816 cites W2123066915 @default.
- W2316653816 cites W2123649031 @default.
- W2316653816 cites W2130319529 @default.
- W2316653816 cites W2131547024 @default.
- W2316653816 cites W2131613989 @default.
- W2316653816 cites W2137743180 @default.
- W2316653816 cites W2145204612 @default.
- W2316653816 cites W2150872461 @default.
- W2316653816 cites W2151339633 @default.
- W2316653816 cites W2152195021 @default.
- W2316653816 cites W2152503192 @default.
- W2316653816 cites W2153119881 @default.
- W2316653816 cites W2157976960 @default.
- W2316653816 cites W2158810475 @default.
- W2316653816 cites W2168997464 @default.
- W2316653816 cites W2169555996 @default.
- W2316653816 cites W2170436854 @default.
- W2316653816 cites W2997320126 @default.
- W2316653816 cites W4248996067 @default.
- W2316653816 cites W4250589301 @default.
- W2316653816 cites W650854417 @default.
- W2316653816 doi "https://doi.org/10.1109/tnnls.2016.2524619" @default.
- W2316653816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27046909" @default.
- W2316653816 hasPublicationYear "2017" @default.
- W2316653816 type Work @default.
- W2316653816 sameAs 2316653816 @default.
- W2316653816 citedByCount "93" @default.
- W2316653816 countsByYear W23166538162016 @default.
- W2316653816 countsByYear W23166538162017 @default.
- W2316653816 countsByYear W23166538162018 @default.
- W2316653816 countsByYear W23166538162019 @default.
- W2316653816 countsByYear W23166538162020 @default.
- W2316653816 countsByYear W23166538162021 @default.
- W2316653816 countsByYear W23166538162022 @default.
- W2316653816 countsByYear W23166538162023 @default.
- W2316653816 crossrefType "journal-article" @default.
- W2316653816 hasAuthorship W2316653816A5036595620 @default.
- W2316653816 hasAuthorship W2316653816A5044406254 @default.
- W2316653816 hasAuthorship W2316653816A5089754208 @default.
- W2316653816 hasConcept C109718341 @default.
- W2316653816 hasConcept C119857082 @default.
- W2316653816 hasConcept C126255220 @default.
- W2316653816 hasConcept C13280743 @default.
- W2316653816 hasConcept C137836250 @default.
- W2316653816 hasConcept C147168706 @default.
- W2316653816 hasConcept C154945302 @default.
- W2316653816 hasConcept C162324750 @default.
- W2316653816 hasConcept C164752517 @default.
- W2316653816 hasConcept C185798385 @default.
- W2316653816 hasConcept C194387892 @default.
- W2316653816 hasConcept C205649164 @default.
- W2316653816 hasConcept C2777303404 @default.
- W2316653816 hasConcept C33923547 @default.
- W2316653816 hasConcept C41008148 @default.
- W2316653816 hasConcept C50522688 @default.
- W2316653816 hasConcept C50644808 @default.
- W2316653816 hasConcept C85617194 @default.
- W2316653816 hasConceptScore W2316653816C109718341 @default.
- W2316653816 hasConceptScore W2316653816C119857082 @default.
- W2316653816 hasConceptScore W2316653816C126255220 @default.
- W2316653816 hasConceptScore W2316653816C13280743 @default.
- W2316653816 hasConceptScore W2316653816C137836250 @default.
- W2316653816 hasConceptScore W2316653816C147168706 @default.
- W2316653816 hasConceptScore W2316653816C154945302 @default.
- W2316653816 hasConceptScore W2316653816C162324750 @default.
- W2316653816 hasConceptScore W2316653816C164752517 @default.
- W2316653816 hasConceptScore W2316653816C185798385 @default.
- W2316653816 hasConceptScore W2316653816C194387892 @default.
- W2316653816 hasConceptScore W2316653816C205649164 @default.
- W2316653816 hasConceptScore W2316653816C2777303404 @default.
- W2316653816 hasConceptScore W2316653816C33923547 @default.
- W2316653816 hasConceptScore W2316653816C41008148 @default.
- W2316653816 hasConceptScore W2316653816C50522688 @default.
- W2316653816 hasConceptScore W2316653816C50644808 @default.
- W2316653816 hasConceptScore W2316653816C85617194 @default.
- W2316653816 hasFunder F4320321592 @default.