Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316668071> ?p ?o ?g. }
- W2316668071 endingPage "965" @default.
- W2316668071 startingPage "941" @default.
- W2316668071 abstract "With the ever-increasing use of Reynolds-Averaged Navier–Stokes (RANS) simulations in mission-critical applications, the quantification of model-form uncertainty in RANS models has attracted attention in the turbulence modeling community. Recently, a physics-based nonparametric approach for quantifying model-form uncertainty in RANS simulations has been proposed, where Reynolds stresses are projected to physically meaningful dimensions and perturbations are introduced only in the physically realizable limits (Xiao et al., 2016). However, a challenge associated with this approach is to assess the amount of information introduced in the prior distribution and to avoid imposing unwarranted constraints. In this work we propose a random matrix approach for quantifying model-form uncertainties in RANS simulations with the realizability of the Reynolds stress guaranteed, which is achieved by construction from the Cholesky factorization of the normalized Reynolds stress tensor. Furthermore, the maximum entropy principle is used to identify the probability distribution that satisfies the constraints from available information but without introducing artificial constraints. We demonstrate that the proposed approach is able to ensure the realizability of the Reynolds stress, albeit in a different manner from the physics-based approach. Monte Carlo sampling of the obtained probability distribution is achieved by using polynomial chaos expansion to map independent Gaussian random fields to the Reynolds stress random field with the marginal distributions and correlation structures as specified. Numerical simulations on a typical flow with separation have shown physically reasonable results, which verify the proposed approach. Therefore, the proposed method is a promising alternative to the physics-based approach for model-form uncertainty quantification of RANS simulations. The method explored in this work is general and can be extended to other complex physical systems in applied mechanics and engineering." @default.
- W2316668071 created "2016-06-24" @default.
- W2316668071 creator A5006138292 @default.
- W2316668071 creator A5076511812 @default.
- W2316668071 date "2017-01-01" @default.
- W2316668071 modified "2023-09-23" @default.
- W2316668071 title "A random matrix approach for quantifying model-form uncertainties in turbulence modeling" @default.
- W2316668071 cites W1523794300 @default.
- W2316668071 cites W1966994088 @default.
- W2316668071 cites W1982769461 @default.
- W2316668071 cites W1983492963 @default.
- W2316668071 cites W1988859494 @default.
- W2316668071 cites W1993272315 @default.
- W2316668071 cites W1994376567 @default.
- W2316668071 cites W1995875735 @default.
- W2316668071 cites W1997969642 @default.
- W2316668071 cites W2007139313 @default.
- W2316668071 cites W2032558547 @default.
- W2316668071 cites W2034198478 @default.
- W2316668071 cites W2059540953 @default.
- W2316668071 cites W2066334029 @default.
- W2316668071 cites W2092315755 @default.
- W2316668071 cites W2100278556 @default.
- W2316668071 cites W2132304446 @default.
- W2316668071 cites W2149865537 @default.
- W2316668071 cites W2150920547 @default.
- W2316668071 cites W2156447271 @default.
- W2316668071 cites W2299186486 @default.
- W2316668071 cites W2490045648 @default.
- W2316668071 cites W2568283272 @default.
- W2316668071 cites W2994323098 @default.
- W2316668071 cites W3098712034 @default.
- W2316668071 doi "https://doi.org/10.1016/j.cma.2016.10.025" @default.
- W2316668071 hasPublicationYear "2017" @default.
- W2316668071 type Work @default.
- W2316668071 sameAs 2316668071 @default.
- W2316668071 citedByCount "29" @default.
- W2316668071 countsByYear W23166680712016 @default.
- W2316668071 countsByYear W23166680712017 @default.
- W2316668071 countsByYear W23166680712018 @default.
- W2316668071 countsByYear W23166680712019 @default.
- W2316668071 countsByYear W23166680712020 @default.
- W2316668071 countsByYear W23166680712021 @default.
- W2316668071 countsByYear W23166680712022 @default.
- W2316668071 countsByYear W23166680712023 @default.
- W2316668071 crossrefType "journal-article" @default.
- W2316668071 hasAuthorship W2316668071A5006138292 @default.
- W2316668071 hasAuthorship W2316668071A5076511812 @default.
- W2316668071 hasBestOaLocation W23166680712 @default.
- W2316668071 hasConcept C105795698 @default.
- W2316668071 hasConcept C121332964 @default.
- W2316668071 hasConcept C121864883 @default.
- W2316668071 hasConcept C126255220 @default.
- W2316668071 hasConcept C130402806 @default.
- W2316668071 hasConcept C134306372 @default.
- W2316668071 hasConcept C147196274 @default.
- W2316668071 hasConcept C150711758 @default.
- W2316668071 hasConcept C152846280 @default.
- W2316668071 hasConcept C189223162 @default.
- W2316668071 hasConcept C19499675 @default.
- W2316668071 hasConcept C196558001 @default.
- W2316668071 hasConcept C197656079 @default.
- W2316668071 hasConcept C28826006 @default.
- W2316668071 hasConcept C32230216 @default.
- W2316668071 hasConcept C32526432 @default.
- W2316668071 hasConcept C33923547 @default.
- W2316668071 hasConcept C57879066 @default.
- W2316668071 hasConcept C73000952 @default.
- W2316668071 hasConceptScore W2316668071C105795698 @default.
- W2316668071 hasConceptScore W2316668071C121332964 @default.
- W2316668071 hasConceptScore W2316668071C121864883 @default.
- W2316668071 hasConceptScore W2316668071C126255220 @default.
- W2316668071 hasConceptScore W2316668071C130402806 @default.
- W2316668071 hasConceptScore W2316668071C134306372 @default.
- W2316668071 hasConceptScore W2316668071C147196274 @default.
- W2316668071 hasConceptScore W2316668071C150711758 @default.
- W2316668071 hasConceptScore W2316668071C152846280 @default.
- W2316668071 hasConceptScore W2316668071C189223162 @default.
- W2316668071 hasConceptScore W2316668071C19499675 @default.
- W2316668071 hasConceptScore W2316668071C196558001 @default.
- W2316668071 hasConceptScore W2316668071C197656079 @default.
- W2316668071 hasConceptScore W2316668071C28826006 @default.
- W2316668071 hasConceptScore W2316668071C32230216 @default.
- W2316668071 hasConceptScore W2316668071C32526432 @default.
- W2316668071 hasConceptScore W2316668071C33923547 @default.
- W2316668071 hasConceptScore W2316668071C57879066 @default.
- W2316668071 hasConceptScore W2316668071C73000952 @default.
- W2316668071 hasFunder F4320333655 @default.
- W2316668071 hasLocation W23166680711 @default.
- W2316668071 hasLocation W23166680712 @default.
- W2316668071 hasOpenAccess W2316668071 @default.
- W2316668071 hasPrimaryLocation W23166680711 @default.
- W2316668071 hasRelatedWork W172558115 @default.
- W2316668071 hasRelatedWork W2159944753 @default.
- W2316668071 hasRelatedWork W2302296583 @default.
- W2316668071 hasRelatedWork W2316668071 @default.
- W2316668071 hasRelatedWork W2462395039 @default.
- W2316668071 hasRelatedWork W2797221366 @default.