Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316961684> ?p ?o ?g. }
- W2316961684 endingPage "3257" @default.
- W2316961684 startingPage "3250" @default.
- W2316961684 abstract "ConspectusThe emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles.In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+Σ, which incorporates corrections to Kohn–Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions.The next question is how well can the scattering of DFT Kohn–Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn–Sham particles have no physical significance. However, Kohn–Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn–Sham energy levels (self-energy errors). These errors are small in the strong-coupling regime where the molecular levels are significantly broadened at the Fermi level but are large in the coherent off-resonant tunneling regime where DFT overestimates conductance by orders of magnitude. The DFT+Σ approach uses a physically motivated, parameter free estimate of the self-energy corrections to correct the energy levels in DFT, giving conductance in quantitative agreement with experiment for a large but nonexhaustive class of single-molecule junctions. In 2D materials, the self-energy error is relatively small, and critical issues stem instead from the large length scales in experiments, which make it necessary to consider band-bending within the 2D material, as well as scattering due to electron–phonon interactions, spin-flip interactions, defects, etc." @default.
- W2316961684 created "2016-06-24" @default.
- W2316961684 creator A5026445892 @default.
- W2316961684 creator A5043284922 @default.
- W2316961684 date "2014-06-16" @default.
- W2316961684 modified "2023-10-18" @default.
- W2316961684 title "Predictive DFT-Based Approaches to Charge and Spin Transport in Single-Molecule Junctions and Two-Dimensional Materials: Successes and Challenges" @default.
- W2316961684 cites W1552613616 @default.
- W2316961684 cites W1678057931 @default.
- W2316961684 cites W1963602276 @default.
- W2316961684 cites W1968863701 @default.
- W2316961684 cites W1990212565 @default.
- W2316961684 cites W1991623240 @default.
- W2316961684 cites W1992609625 @default.
- W2316961684 cites W1994492711 @default.
- W2316961684 cites W1998912984 @default.
- W2316961684 cites W2005197716 @default.
- W2316961684 cites W2006414802 @default.
- W2316961684 cites W2007361212 @default.
- W2316961684 cites W2007668689 @default.
- W2316961684 cites W2009376473 @default.
- W2316961684 cites W2009412440 @default.
- W2316961684 cites W2012547166 @default.
- W2316961684 cites W2013726371 @default.
- W2316961684 cites W2014094922 @default.
- W2316961684 cites W2014914608 @default.
- W2316961684 cites W2023150460 @default.
- W2316961684 cites W2025589182 @default.
- W2316961684 cites W2028152934 @default.
- W2316961684 cites W2029715418 @default.
- W2316961684 cites W2031462444 @default.
- W2316961684 cites W2031904472 @default.
- W2316961684 cites W2034331582 @default.
- W2316961684 cites W2037145296 @default.
- W2316961684 cites W2037433436 @default.
- W2316961684 cites W2038710346 @default.
- W2316961684 cites W2038754735 @default.
- W2316961684 cites W2040191301 @default.
- W2316961684 cites W2040264466 @default.
- W2316961684 cites W2040381549 @default.
- W2316961684 cites W2043265027 @default.
- W2316961684 cites W2052865011 @default.
- W2316961684 cites W2055087612 @default.
- W2316961684 cites W2055385333 @default.
- W2316961684 cites W2066545229 @default.
- W2316961684 cites W2068599464 @default.
- W2316961684 cites W2069354859 @default.
- W2316961684 cites W2074709150 @default.
- W2316961684 cites W2074719595 @default.
- W2316961684 cites W2079596578 @default.
- W2316961684 cites W2082276679 @default.
- W2316961684 cites W2088357798 @default.
- W2316961684 cites W2088380112 @default.
- W2316961684 cites W2088753001 @default.
- W2316961684 cites W2090760919 @default.
- W2316961684 cites W2091467952 @default.
- W2316961684 cites W2092226069 @default.
- W2316961684 cites W2092349356 @default.
- W2316961684 cites W2102938440 @default.
- W2316961684 cites W2104812388 @default.
- W2316961684 cites W2105776073 @default.
- W2316961684 cites W2110256728 @default.
- W2316961684 cites W2119152638 @default.
- W2316961684 cites W2119715145 @default.
- W2316961684 cites W2139789123 @default.
- W2316961684 cites W2151831457 @default.
- W2316961684 cites W2163633230 @default.
- W2316961684 cites W2326926054 @default.
- W2316961684 cites W2328621673 @default.
- W2316961684 cites W2328690585 @default.
- W2316961684 cites W3102179891 @default.
- W2316961684 cites W3104088487 @default.
- W2316961684 cites W3106407871 @default.
- W2316961684 doi "https://doi.org/10.1021/ar4002526" @default.
- W2316961684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24933289" @default.
- W2316961684 hasPublicationYear "2014" @default.
- W2316961684 type Work @default.
- W2316961684 sameAs 2316961684 @default.
- W2316961684 citedByCount "38" @default.
- W2316961684 countsByYear W23169616842015 @default.
- W2316961684 countsByYear W23169616842016 @default.
- W2316961684 countsByYear W23169616842017 @default.
- W2316961684 countsByYear W23169616842018 @default.
- W2316961684 countsByYear W23169616842019 @default.
- W2316961684 countsByYear W23169616842021 @default.
- W2316961684 countsByYear W23169616842022 @default.
- W2316961684 countsByYear W23169616842023 @default.
- W2316961684 crossrefType "journal-article" @default.
- W2316961684 hasAuthorship W2316961684A5026445892 @default.
- W2316961684 hasAuthorship W2316961684A5043284922 @default.
- W2316961684 hasConcept C121332964 @default.
- W2316961684 hasConcept C121864883 @default.
- W2316961684 hasConcept C136479403 @default.
- W2316961684 hasConcept C147120987 @default.
- W2316961684 hasConcept C152365726 @default.
- W2316961684 hasConcept C188082385 @default.
- W2316961684 hasConcept C191486275 @default.
- W2316961684 hasConcept C26873012 @default.