Matches in SemOpenAlex for { <https://semopenalex.org/work/W2316966472> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2316966472 abstract "PreviousNext No AccessBeijing 2014 International Geophysical Conference & Exposition, Beijing, China, 21-24 April 2014Application of Pinciple Component Spectral Analysis (PCSA) on channel detectionAuthors: Yan GaohanYang WuyangWei XinjianYang QingWang EnliYan GaohanResearch Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou 730020, ChinaSearch for more papers by this author, Yang WuyangResearch Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou 730020, ChinaSearch for more papers by this author, Wei XinjianResearch Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou 730020, ChinaSearch for more papers by this author, Yang QingResearch Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou 730020, ChinaSearch for more papers by this author, and Wang EnliResearch Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou 730020, ChinaSearch for more papers by this authorhttps://doi.org/10.1190/IGCBeijing2014-215 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract Spectral decomposition is a method applied in geophysical interpretation widely, which can reveal the lateral variation in thin bed and is effective in channel detection. Generally, dozens of single frequency volume data would be generated to analyze for one seismic volume. However, lots of redundancy exist among these single frequency data, which leads to the result that interpreters are usually hard to choose those correct frequencies to characterize the seismic data. Principle component analysis(PCA) was applied to those single frequency data, which is able to obtain the most important elements and structures from overabundance data, and figure out the simple structure hidden in the complicated data. The real seismic data test demonstrates the effectiveness of this method, which is able to depict the channel characteristics more delicately. Keywords: spectral, decomposition, attributesPermalink: https://doi.org/10.1190/IGCBeijing2014-215FiguresReferencesRelatedDetails Beijing 2014 International Geophysical Conference & Exposition, Beijing, China, 21-24 April 2014ISSN (online):2159-6832Copyright: 2014 Pages: 1360 publication data© 2014 Published in electronic format with permission by the Society of Exploration Geophysicists and Chinese Petroleum SocietyPublisher:Society of Exploration Geophysicists HistoryPublished: 24 Apr 2014 CITATION INFORMATION Yan Gaohan, Yang Wuyang, Wei Xinjian, Yang Qing, and Wang Enli, (2014), Application of Pinciple Component Spectral Analysis (PCSA) on channel detection, SEG Global Meeting Abstracts : 849-852. https://doi.org/10.1190/IGCBeijing2014-215 Plain-Language Summary KeywordsspectraldecompositionattributesPDF DownloadLoading ..." @default.
- W2316966472 created "2016-06-24" @default.
- W2316966472 creator A5016297588 @default.
- W2316966472 creator A5018538741 @default.
- W2316966472 creator A5032668433 @default.
- W2316966472 creator A5039024639 @default.
- W2316966472 creator A5080326663 @default.
- W2316966472 date "2014-04-24" @default.
- W2316966472 modified "2023-10-18" @default.
- W2316966472 title "Application of Pinciple Component Spectral Analysis (PCSA) on channel detection" @default.
- W2316966472 cites W1992137384 @default.
- W2316966472 cites W2030242689 @default.
- W2316966472 cites W2070106395 @default.
- W2316966472 cites W2139084611 @default.
- W2316966472 doi "https://doi.org/10.1190/igcbeijing2014-215" @default.
- W2316966472 hasPublicationYear "2014" @default.
- W2316966472 type Work @default.
- W2316966472 sameAs 2316966472 @default.
- W2316966472 citedByCount "0" @default.
- W2316966472 crossrefType "proceedings-article" @default.
- W2316966472 hasAuthorship W2316966472A5016297588 @default.
- W2316966472 hasAuthorship W2316966472A5018538741 @default.
- W2316966472 hasAuthorship W2316966472A5032668433 @default.
- W2316966472 hasAuthorship W2316966472A5039024639 @default.
- W2316966472 hasAuthorship W2316966472A5080326663 @default.
- W2316966472 hasConcept C127162648 @default.
- W2316966472 hasConcept C127313418 @default.
- W2316966472 hasConcept C151730666 @default.
- W2316966472 hasConcept C41008148 @default.
- W2316966472 hasConcept C548895740 @default.
- W2316966472 hasConcept C76155785 @default.
- W2316966472 hasConceptScore W2316966472C127162648 @default.
- W2316966472 hasConceptScore W2316966472C127313418 @default.
- W2316966472 hasConceptScore W2316966472C151730666 @default.
- W2316966472 hasConceptScore W2316966472C41008148 @default.
- W2316966472 hasConceptScore W2316966472C548895740 @default.
- W2316966472 hasConceptScore W2316966472C76155785 @default.
- W2316966472 hasLocation W23169664721 @default.
- W2316966472 hasOpenAccess W2316966472 @default.
- W2316966472 hasPrimaryLocation W23169664721 @default.
- W2316966472 hasRelatedWork W1970149378 @default.
- W2316966472 hasRelatedWork W2032850700 @default.
- W2316966472 hasRelatedWork W2052961784 @default.
- W2316966472 hasRelatedWork W2100019949 @default.
- W2316966472 hasRelatedWork W2124552315 @default.
- W2316966472 hasRelatedWork W2325365690 @default.
- W2316966472 hasRelatedWork W2327025226 @default.
- W2316966472 hasRelatedWork W2359317704 @default.
- W2316966472 hasRelatedWork W2789529352 @default.
- W2316966472 hasRelatedWork W3142993198 @default.
- W2316966472 isParatext "false" @default.
- W2316966472 isRetracted "false" @default.
- W2316966472 magId "2316966472" @default.
- W2316966472 workType "article" @default.