Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317005862> ?p ?o ?g. }
- W2317005862 endingPage "233" @default.
- W2317005862 startingPage "217" @default.
- W2317005862 abstract "Reservoir fluid properties such as bubble point pressure, oil formation volume factor and viscosity are very important in reservoir and petroleum production engineering computations such as outflow–inflow well performance, material balance calculations, well test analysis, reserve estimates, and numerical reservoir simulations. Ideally, these properties should be obtained from actual measurements. Quite often, however, these measurements are either not available or very costly to obtain. In such cases, empirically derived correlations are used to predict the needed properties using the known properties such as temperature, specific gravity of oil and gas, and gas–oil ratio. Therefore, all computations depend on the accuracy of the correlations used for predicting the fluid properties. Almost all of these previous correlations were developed with linear or nonlinear multiple regression or graphical techniques. Artificial neural networks, once successfully trained, offer an alternative way to obtain reliable and more accurate results for the determination of crude oil PVT properties, because it can capture highly nonlinear behavior and relationship between the input and output data as compared to linear and nonlinear regression techniques. In this study, we present neural network-based models for the prediction of PVT properties of crude oils from Pakistan. The data on which the networks were trained and tested contain 166 data sets from 22 different crude oil samples and used in developing PVT models for Pakistan crude oils. The developed neural network models are able to predict the bubble point pressure, oil formation volume factor and viscosity as a function of the solution gas–oil ratio, gas specific gravity, oil specific gravity, and temperature. A detailed comparison between the results predicted by the neural network models and those predicted by other previously published correlations shows that the developed neural network models outperform most other existing correlations by giving significantly lower values of average absolute relative error for the bubble point, oil formation volume factor at bubble point, and gas-saturated oil viscosity." @default.
- W2317005862 created "2016-06-24" @default.
- W2317005862 creator A5053834729 @default.
- W2317005862 creator A5072141445 @default.
- W2317005862 date "2016-02-10" @default.
- W2317005862 modified "2023-09-30" @default.
- W2317005862 title "PVT correlations for Pakistani crude oils using artificial neural network" @default.
- W2317005862 cites W1964868025 @default.
- W2317005862 cites W1969880976 @default.
- W2317005862 cites W1970289169 @default.
- W2317005862 cites W1979108527 @default.
- W2317005862 cites W1979610971 @default.
- W2317005862 cites W1980671715 @default.
- W2317005862 cites W1988555071 @default.
- W2317005862 cites W1992058902 @default.
- W2317005862 cites W1995598995 @default.
- W2317005862 cites W1999585799 @default.
- W2317005862 cites W2010542857 @default.
- W2317005862 cites W2015675937 @default.
- W2317005862 cites W2018417486 @default.
- W2317005862 cites W2023095633 @default.
- W2317005862 cites W2025343453 @default.
- W2317005862 cites W2032741416 @default.
- W2317005862 cites W2039744124 @default.
- W2317005862 cites W2062688288 @default.
- W2317005862 cites W2066504809 @default.
- W2317005862 cites W2079493731 @default.
- W2317005862 cites W2079789553 @default.
- W2317005862 cites W2084547442 @default.
- W2317005862 cites W2086115842 @default.
- W2317005862 cites W2087814009 @default.
- W2317005862 cites W2107748757 @default.
- W2317005862 cites W2325102763 @default.
- W2317005862 doi "https://doi.org/10.1007/s13202-016-0232-z" @default.
- W2317005862 hasPublicationYear "2016" @default.
- W2317005862 type Work @default.
- W2317005862 sameAs 2317005862 @default.
- W2317005862 citedByCount "19" @default.
- W2317005862 countsByYear W23170058622018 @default.
- W2317005862 countsByYear W23170058622019 @default.
- W2317005862 countsByYear W23170058622020 @default.
- W2317005862 countsByYear W23170058622021 @default.
- W2317005862 countsByYear W23170058622022 @default.
- W2317005862 countsByYear W23170058622023 @default.
- W2317005862 crossrefType "journal-article" @default.
- W2317005862 hasAuthorship W2317005862A5053834729 @default.
- W2317005862 hasAuthorship W2317005862A5072141445 @default.
- W2317005862 hasBestOaLocation W23170058621 @default.
- W2317005862 hasConcept C111368507 @default.
- W2317005862 hasConcept C11413529 @default.
- W2317005862 hasConcept C119857082 @default.
- W2317005862 hasConcept C121332964 @default.
- W2317005862 hasConcept C127313418 @default.
- W2317005862 hasConcept C157915830 @default.
- W2317005862 hasConcept C158622935 @default.
- W2317005862 hasConcept C173608175 @default.
- W2317005862 hasConcept C187320778 @default.
- W2317005862 hasConcept C20556612 @default.
- W2317005862 hasConcept C2631668 @default.
- W2317005862 hasConcept C2776132308 @default.
- W2317005862 hasConcept C2987168347 @default.
- W2317005862 hasConcept C33923547 @default.
- W2317005862 hasConcept C41008148 @default.
- W2317005862 hasConcept C43785746 @default.
- W2317005862 hasConcept C45374587 @default.
- W2317005862 hasConcept C46262669 @default.
- W2317005862 hasConcept C50644808 @default.
- W2317005862 hasConcept C57879066 @default.
- W2317005862 hasConcept C62520636 @default.
- W2317005862 hasConcept C78762247 @default.
- W2317005862 hasConcept C80019733 @default.
- W2317005862 hasConcept C86132830 @default.
- W2317005862 hasConcept C97355855 @default.
- W2317005862 hasConceptScore W2317005862C111368507 @default.
- W2317005862 hasConceptScore W2317005862C11413529 @default.
- W2317005862 hasConceptScore W2317005862C119857082 @default.
- W2317005862 hasConceptScore W2317005862C121332964 @default.
- W2317005862 hasConceptScore W2317005862C127313418 @default.
- W2317005862 hasConceptScore W2317005862C157915830 @default.
- W2317005862 hasConceptScore W2317005862C158622935 @default.
- W2317005862 hasConceptScore W2317005862C173608175 @default.
- W2317005862 hasConceptScore W2317005862C187320778 @default.
- W2317005862 hasConceptScore W2317005862C20556612 @default.
- W2317005862 hasConceptScore W2317005862C2631668 @default.
- W2317005862 hasConceptScore W2317005862C2776132308 @default.
- W2317005862 hasConceptScore W2317005862C2987168347 @default.
- W2317005862 hasConceptScore W2317005862C33923547 @default.
- W2317005862 hasConceptScore W2317005862C41008148 @default.
- W2317005862 hasConceptScore W2317005862C43785746 @default.
- W2317005862 hasConceptScore W2317005862C45374587 @default.
- W2317005862 hasConceptScore W2317005862C46262669 @default.
- W2317005862 hasConceptScore W2317005862C50644808 @default.
- W2317005862 hasConceptScore W2317005862C57879066 @default.
- W2317005862 hasConceptScore W2317005862C62520636 @default.
- W2317005862 hasConceptScore W2317005862C78762247 @default.
- W2317005862 hasConceptScore W2317005862C80019733 @default.
- W2317005862 hasConceptScore W2317005862C86132830 @default.
- W2317005862 hasConceptScore W2317005862C97355855 @default.