Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317278575> ?p ?o ?g. }
- W2317278575 endingPage "16315" @default.
- W2317278575 startingPage "16306" @default.
- W2317278575 abstract "The linear carbon chains called the carbynes are possibly the most simple carbon molecular systems of interest as the potential materials for nanoelectronics. In a metallic cumulenic form of carbyne, the C atoms form the double bonds (...═C═C═...), but the single and triple bonds alternate in the semiconducting polyynic structure (...–C≡C–C≡C–...). In this work, the ballistic electrical conductance of cumulenic and polyynic carbon chains C40, C20, and C10 is calculated using the π-electron tight-binding methods. The transmission function and dependences of the current on the length of the carbon chain, the type of carbon bonds, material properties of the electrodes, bias voltage, and temperature are obtained. For the calculations of transmission function, we use the Schrödinger equation that meets the specified value of the energy E, the wave functions being the superposition of incident and reflected waves in the region of cathode, and describe the transmitted wave in the anode. For small bias voltages, the problem of calculating the transmission function in the cumulenic and polyynic chains is solved analytically by applying the difference schemes approach which permits us to pass from the tight-binding algebraic equations to the differential equations and to take advantage of their solutions. In the case of large voltages, we apply an iterative technique. The transmission functions τ(E,V) of the cumulenic and polyynic chains of similar composition differ dramatically. The energy regions of very high and low transparency of carbynes for electrons are obtained, and an oscillatory character of the energy dependence of transmission functions is pointed out. Each electronic level of the molecule corresponds to a peak in the energy dependence of transmission function with τ ≈ 1. The peaks are responsible for the resonant electron transfer between the electrodes. The voltage-dependent variations of the τ are initially quite weak, but at the higher voltages their effect is a drastic reduction of the carbyne transparency. One important feature of the current–voltage I–V characteristics is that the current initially increases with growth of the bias voltage, reaches a peak, and then drops to give rise to the negative conductance. On the typical I–V curves of the polyynic chains, there are both the peak and local minimum (valley) at higher voltages. Moreover, there are some oscillations of voltage dependences of conductance due to the discrete nature of the C chain electron energy levels. The π electron model results are compared with ab initio data on conductance of similar chains having only several C atoms. The presence of the negative resistance regions and valley in the curve I–V indicate the possibilities of design of the resonance tunneling devices based on the C chains." @default.
- W2317278575 created "2016-06-24" @default.
- W2317278575 creator A5001450120 @default.
- W2317278575 creator A5006693095 @default.
- W2317278575 creator A5054513263 @default.
- W2317278575 creator A5078381303 @default.
- W2317278575 date "2013-08-06" @default.
- W2317278575 modified "2023-09-25" @default.
- W2317278575 title "Tight Binding Model of Quantum Conductance of Cumulenic and Polyynic Carbynes" @default.
- W2317278575 cites W1646294624 @default.
- W2317278575 cites W1951028694 @default.
- W2317278575 cites W1963533648 @default.
- W2317278575 cites W1970363070 @default.
- W2317278575 cites W1971348928 @default.
- W2317278575 cites W1977838850 @default.
- W2317278575 cites W1980543538 @default.
- W2317278575 cites W1982869792 @default.
- W2317278575 cites W1985749205 @default.
- W2317278575 cites W1985831668 @default.
- W2317278575 cites W1986993716 @default.
- W2317278575 cites W1989535121 @default.
- W2317278575 cites W1990212565 @default.
- W2317278575 cites W1993291039 @default.
- W2317278575 cites W1994409022 @default.
- W2317278575 cites W2002114533 @default.
- W2317278575 cites W2005869261 @default.
- W2317278575 cites W2006395161 @default.
- W2317278575 cites W2006425626 @default.
- W2317278575 cites W2008089381 @default.
- W2317278575 cites W2010611896 @default.
- W2317278575 cites W2014190157 @default.
- W2317278575 cites W2019518410 @default.
- W2317278575 cites W2021544155 @default.
- W2317278575 cites W2025990563 @default.
- W2317278575 cites W2033232871 @default.
- W2317278575 cites W2033626791 @default.
- W2317278575 cites W2035384066 @default.
- W2317278575 cites W2044484729 @default.
- W2317278575 cites W2044878723 @default.
- W2317278575 cites W2050476929 @default.
- W2317278575 cites W2050516213 @default.
- W2317278575 cites W2052903324 @default.
- W2317278575 cites W2056726484 @default.
- W2317278575 cites W2061342219 @default.
- W2317278575 cites W2064535872 @default.
- W2317278575 cites W2066326462 @default.
- W2317278575 cites W2067058956 @default.
- W2317278575 cites W2078509170 @default.
- W2317278575 cites W2087751940 @default.
- W2317278575 cites W2091417292 @default.
- W2317278575 cites W2091725306 @default.
- W2317278575 cites W2112215441 @default.
- W2317278575 cites W2136392205 @default.
- W2317278575 cites W2137948319 @default.
- W2317278575 cites W2138861556 @default.
- W2317278575 cites W2149166552 @default.
- W2317278575 cites W2160964092 @default.
- W2317278575 cites W3205636338 @default.
- W2317278575 cites W4205604664 @default.
- W2317278575 cites W4211172053 @default.
- W2317278575 cites W4256466929 @default.
- W2317278575 cites W4293570282 @default.
- W2317278575 cites W1991447983 @default.
- W2317278575 doi "https://doi.org/10.1021/jp4038864" @default.
- W2317278575 hasPublicationYear "2013" @default.
- W2317278575 type Work @default.
- W2317278575 sameAs 2317278575 @default.
- W2317278575 citedByCount "17" @default.
- W2317278575 countsByYear W23172785752014 @default.
- W2317278575 countsByYear W23172785752015 @default.
- W2317278575 countsByYear W23172785752017 @default.
- W2317278575 countsByYear W23172785752018 @default.
- W2317278575 countsByYear W23172785752019 @default.
- W2317278575 countsByYear W23172785752020 @default.
- W2317278575 countsByYear W23172785752021 @default.
- W2317278575 countsByYear W23172785752022 @default.
- W2317278575 countsByYear W23172785752023 @default.
- W2317278575 crossrefType "journal-article" @default.
- W2317278575 hasAuthorship W2317278575A5001450120 @default.
- W2317278575 hasAuthorship W2317278575A5006693095 @default.
- W2317278575 hasAuthorship W2317278575A5054513263 @default.
- W2317278575 hasAuthorship W2317278575A5078381303 @default.
- W2317278575 hasConcept C104779481 @default.
- W2317278575 hasConcept C113603373 @default.
- W2317278575 hasConcept C115235246 @default.
- W2317278575 hasConcept C121332964 @default.
- W2317278575 hasConcept C121932024 @default.
- W2317278575 hasConcept C140205800 @default.
- W2317278575 hasConcept C147597530 @default.
- W2317278575 hasConcept C159985019 @default.
- W2317278575 hasConcept C161790260 @default.
- W2317278575 hasConcept C17525397 @default.
- W2317278575 hasConcept C182063899 @default.
- W2317278575 hasConcept C185592680 @default.
- W2317278575 hasConcept C192562407 @default.
- W2317278575 hasConcept C26873012 @default.
- W2317278575 hasConcept C2777164566 @default.
- W2317278575 hasConcept C2780696404 @default.