Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317297910> ?p ?o ?g. }
- W2317297910 endingPage "1646" @default.
- W2317297910 startingPage "1636" @default.
- W2317297910 abstract "The core–shell nanoparticle structure, which consists of an inner layer “guest” nanoparticle encapsulated inside another of a different material, is the simplest motif in two-component systems. In comparison to the conventional single-component systems, complex systems pose both challenges and opportunities. In this Account, we describe our recent progresses in using core–shell motif for exploring new and sophisticated nanostructures. Our discussion is focused on the mechanistic details, in order to facilitate rational design in future studies. We believe that systematic development of synthetic capability, particularly in complex and multifunctional systems, is of great importance for future applications.A key issue in obtaining core–shell nanostructures is minimizing the core-shell interfacial tension. Typically, one can coat the core with a ligand for better interaction with the shell. By selecting suitable ligands, we have developed general encapsulation methods in three systems. A variety of nanoparticles and nanowires were encapsulated using either amphiphilic block copolymer (polystyrene-block-poly(acrylic acid)), conductive polymer (polyaniline, polypyrrole, or polythiophene), or silica as the shell material.Obvious uses of shells are to stabilize colloidal objects, retain their surface ligands, prevent particle aggregation, or preserve the assembled superstructures. These simple capabilities are essential in our synthesis of surface-enhanced Raman scattering nanoprobes, in assigning the solution state of nanostructures before drying, and in developing purification methods for nano-objects. When it is applied in situ during nanocrystal growth or nanoparticle assembly, the intermediates trapped by shell encapsulation can offer great insights into the mechanistic details.On the other hand, having a shell as a second component provides a window for exploring the core–shell synergistic effects. Hybrid core–shell nanocrystals have interesting effects, for example, in causing the untwisting of nanowires to give double helices. In addition, partial polymer shells can bias nanocrystal growth towards one direction or promote the random growth of Au dendritic structures; contracting polymer shells can compress the embedded nanofilaments (Au nanowires or carbon nanotubes), forcing them to coil into rings. Also, by exploiting the sphere-to-cylinder conversion of block copolymer micelles, the Au nanoparticles pre-embedded in the polymer micelles can be assembled into long chains.Lastly, shells are also very useful for mechanistic studies. We have demonstrated such applications in studying the controlled aggregation of nanoparticles, in probing the diffusion kinetics of model drug molecules from nanocarriers to nanoacceptors, and in measuring the ionic diffusion through polyaniline shells." @default.
- W2317297910 created "2016-06-24" @default.
- W2317297910 creator A5010212263 @default.
- W2317297910 creator A5033020983 @default.
- W2317297910 creator A5066785407 @default.
- W2317297910 creator A5075305799 @default.
- W2317297910 date "2013-04-24" @default.
- W2317297910 modified "2023-10-17" @default.
- W2317297910 title "Exploiting Core–Shell Synergy for Nanosynthesis and Mechanistic Investigation" @default.
- W2317297910 cites W1970231614 @default.
- W2317297910 cites W1970384388 @default.
- W2317297910 cites W1987793840 @default.
- W2317297910 cites W1989754158 @default.
- W2317297910 cites W1993702619 @default.
- W2317297910 cites W2001925450 @default.
- W2317297910 cites W2003192987 @default.
- W2317297910 cites W2006942752 @default.
- W2317297910 cites W2009421745 @default.
- W2317297910 cites W2011644639 @default.
- W2317297910 cites W2017463626 @default.
- W2317297910 cites W2018765408 @default.
- W2317297910 cites W2020186674 @default.
- W2317297910 cites W2022985353 @default.
- W2317297910 cites W2023846884 @default.
- W2317297910 cites W2025558509 @default.
- W2317297910 cites W2027283694 @default.
- W2317297910 cites W2043779209 @default.
- W2317297910 cites W2048924026 @default.
- W2317297910 cites W2061745622 @default.
- W2317297910 cites W2075370047 @default.
- W2317297910 cites W2077576064 @default.
- W2317297910 cites W2085914647 @default.
- W2317297910 cites W2092834369 @default.
- W2317297910 cites W2100283645 @default.
- W2317297910 cites W2103774092 @default.
- W2317297910 cites W2111662054 @default.
- W2317297910 cites W2111905436 @default.
- W2317297910 cites W2113563271 @default.
- W2317297910 cites W2139683943 @default.
- W2317297910 cites W2141833256 @default.
- W2317297910 cites W2142240359 @default.
- W2317297910 cites W2157740545 @default.
- W2317297910 cites W2158335575 @default.
- W2317297910 cites W2160737750 @default.
- W2317297910 cites W2164294715 @default.
- W2317297910 cites W2165328654 @default.
- W2317297910 cites W2165667663 @default.
- W2317297910 cites W2312745654 @default.
- W2317297910 cites W2333701785 @default.
- W2317297910 doi "https://doi.org/10.1021/ar400020j" @default.
- W2317297910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23614692" @default.
- W2317297910 hasPublicationYear "2013" @default.
- W2317297910 type Work @default.
- W2317297910 sameAs 2317297910 @default.
- W2317297910 citedByCount "180" @default.
- W2317297910 countsByYear W23172979102013 @default.
- W2317297910 countsByYear W23172979102014 @default.
- W2317297910 countsByYear W23172979102015 @default.
- W2317297910 countsByYear W23172979102016 @default.
- W2317297910 countsByYear W23172979102017 @default.
- W2317297910 countsByYear W23172979102018 @default.
- W2317297910 countsByYear W23172979102019 @default.
- W2317297910 countsByYear W23172979102020 @default.
- W2317297910 countsByYear W23172979102021 @default.
- W2317297910 countsByYear W23172979102022 @default.
- W2317297910 countsByYear W23172979102023 @default.
- W2317297910 crossrefType "journal-article" @default.
- W2317297910 hasAuthorship W2317297910A5010212263 @default.
- W2317297910 hasAuthorship W2317297910A5033020983 @default.
- W2317297910 hasAuthorship W2317297910A5066785407 @default.
- W2317297910 hasAuthorship W2317297910A5075305799 @default.
- W2317297910 hasConcept C155672457 @default.
- W2317297910 hasConcept C15920480 @default.
- W2317297910 hasConcept C159985019 @default.
- W2317297910 hasConcept C171250308 @default.
- W2317297910 hasConcept C186187911 @default.
- W2317297910 hasConcept C192562407 @default.
- W2317297910 hasConcept C26856880 @default.
- W2317297910 hasConcept C2777922577 @default.
- W2317297910 hasConcept C521977710 @default.
- W2317297910 hasConcept C67407626 @default.
- W2317297910 hasConcept C74214498 @default.
- W2317297910 hasConceptScore W2317297910C155672457 @default.
- W2317297910 hasConceptScore W2317297910C15920480 @default.
- W2317297910 hasConceptScore W2317297910C159985019 @default.
- W2317297910 hasConceptScore W2317297910C171250308 @default.
- W2317297910 hasConceptScore W2317297910C186187911 @default.
- W2317297910 hasConceptScore W2317297910C192562407 @default.
- W2317297910 hasConceptScore W2317297910C26856880 @default.
- W2317297910 hasConceptScore W2317297910C2777922577 @default.
- W2317297910 hasConceptScore W2317297910C521977710 @default.
- W2317297910 hasConceptScore W2317297910C67407626 @default.
- W2317297910 hasConceptScore W2317297910C74214498 @default.
- W2317297910 hasIssue "7" @default.
- W2317297910 hasLocation W23172979101 @default.
- W2317297910 hasLocation W23172979102 @default.
- W2317297910 hasOpenAccess W2317297910 @default.
- W2317297910 hasPrimaryLocation W23172979101 @default.