Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317643065> ?p ?o ?g. }
- W2317643065 endingPage "112" @default.
- W2317643065 startingPage "101" @default.
- W2317643065 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 457:101-112 (2012) - DOI: https://doi.org/10.3354/meps09760 Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: the role of metabolism and growth Zhen-Long Sun1, Qin-Feng Gao1,*, Shuang-Lin Dong1, Paul K. S. Shin2, Fang Wang1 1Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao City, Shandong Province 266003, PR China 2Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China *E-mail: qfgao@ouc.edu.cn ABSTRACT: Stable isotope analysis is increasingly being used to determine the trophic relationships of aquatic ecosystems. Most ecological and biological conclusions from isotope analysis are based on the assumption that the tissues of the respective consumers are in equilibrium with the potential food sources. Such an assumption, however, is not always validated in individual field studies. Hence, knowledge of the stable isotope turnover rates for the experimental organisms is fundamental for interpreting isotopic data. In this study, the carbon isotopic turnover rates for body walls and intestines of sea cucumbers Apostichopus japonicus (Selenka) of different sizes were investigated. The carbon isotopic turnover rate for the intestine was found to be faster than that for the body wall. The carbon stable isotope turnover rate decreased with an increase in body size, owing to the decrease in the metabolic activities of the larger individuals. Metabolism, rather than growth, was the principal driver of carbon stable isotope turnover, contributing 80 to 90% of the turnover for the intestine and 60 to 75% for the body wall. Analysis of the relationship between carbon replacement and the metabolism of sea cucumbers showed that the half-lives of carbon isotope replacement for both intestine and body wall were significantly related to physiological activities in terms of the oxygen consumption rates and food ingestion rates of the sea cucumbers. Our findings suggested that differences in turnover rates between various species and tissues should be considered when using stable isotopes in ecological studies. It is proposed that further development of isotope mixing models is needed and that these models should integrate isotope turnover for specific species or tissues. KEY WORDS: Sea cucumber · Apostichopus japonicus (Selenka) · Carbon turnover · Stable isotope · Metabolism Full text in pdf format PreviousNextCite this article as: Sun ZL, Gao QF, Dong SL, Shin PKS, Wang F (2012) Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: the role of metabolism and growth. Mar Ecol Prog Ser 457:101-112. https://doi.org/10.3354/meps09760 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 457. Online publication date: June 21, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W2317643065 created "2016-06-24" @default.
- W2317643065 creator A5002661071 @default.
- W2317643065 creator A5009190369 @default.
- W2317643065 creator A5031455356 @default.
- W2317643065 creator A5050582535 @default.
- W2317643065 creator A5085495475 @default.
- W2317643065 date "2012-06-21" @default.
- W2317643065 modified "2023-09-28" @default.
- W2317643065 title "Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: the role of metabolism and growth" @default.
- W2317643065 cites W1939811676 @default.
- W2317643065 cites W1967995171 @default.
- W2317643065 cites W1968614438 @default.
- W2317643065 cites W1981280549 @default.
- W2317643065 cites W1987196911 @default.
- W2317643065 cites W1988546974 @default.
- W2317643065 cites W1990589187 @default.
- W2317643065 cites W2000275667 @default.
- W2317643065 cites W2001956113 @default.
- W2317643065 cites W2003095267 @default.
- W2317643065 cites W2003401936 @default.
- W2317643065 cites W2012167170 @default.
- W2317643065 cites W2018172164 @default.
- W2317643065 cites W2021932527 @default.
- W2317643065 cites W2032747869 @default.
- W2317643065 cites W2036543587 @default.
- W2317643065 cites W2037086940 @default.
- W2317643065 cites W2038689959 @default.
- W2317643065 cites W2046261729 @default.
- W2317643065 cites W2049429223 @default.
- W2317643065 cites W2049721893 @default.
- W2317643065 cites W2049818008 @default.
- W2317643065 cites W2056554959 @default.
- W2317643065 cites W2059524357 @default.
- W2317643065 cites W2063316768 @default.
- W2317643065 cites W2068270261 @default.
- W2317643065 cites W2075468594 @default.
- W2317643065 cites W2077812767 @default.
- W2317643065 cites W2081604939 @default.
- W2317643065 cites W2084273225 @default.
- W2317643065 cites W2086535089 @default.
- W2317643065 cites W2091699432 @default.
- W2317643065 cites W2107053382 @default.
- W2317643065 cites W2109868247 @default.
- W2317643065 cites W2111093622 @default.
- W2317643065 cites W2113023092 @default.
- W2317643065 cites W2115262455 @default.
- W2317643065 cites W2121173485 @default.
- W2317643065 cites W2122752327 @default.
- W2317643065 cites W2135104266 @default.
- W2317643065 cites W2141899433 @default.
- W2317643065 cites W2142926429 @default.
- W2317643065 cites W2147681307 @default.
- W2317643065 cites W2149598290 @default.
- W2317643065 cites W2155009193 @default.
- W2317643065 cites W2160053118 @default.
- W2317643065 cites W2160580669 @default.
- W2317643065 cites W2176194090 @default.
- W2317643065 cites W2333778491 @default.
- W2317643065 cites W2372973540 @default.
- W2317643065 cites W4238524179 @default.
- W2317643065 cites W4241521648 @default.
- W2317643065 doi "https://doi.org/10.3354/meps09760" @default.
- W2317643065 hasPublicationYear "2012" @default.
- W2317643065 type Work @default.
- W2317643065 sameAs 2317643065 @default.
- W2317643065 citedByCount "43" @default.
- W2317643065 countsByYear W23176430652012 @default.
- W2317643065 countsByYear W23176430652013 @default.
- W2317643065 countsByYear W23176430652014 @default.
- W2317643065 countsByYear W23176430652015 @default.
- W2317643065 countsByYear W23176430652016 @default.
- W2317643065 countsByYear W23176430652017 @default.
- W2317643065 countsByYear W23176430652018 @default.
- W2317643065 countsByYear W23176430652019 @default.
- W2317643065 countsByYear W23176430652020 @default.
- W2317643065 countsByYear W23176430652021 @default.
- W2317643065 countsByYear W23176430652022 @default.
- W2317643065 countsByYear W23176430652023 @default.
- W2317643065 crossrefType "journal-article" @default.
- W2317643065 hasAuthorship W2317643065A5002661071 @default.
- W2317643065 hasAuthorship W2317643065A5009190369 @default.
- W2317643065 hasAuthorship W2317643065A5031455356 @default.
- W2317643065 hasAuthorship W2317643065A5050582535 @default.
- W2317643065 hasAuthorship W2317643065A5085495475 @default.
- W2317643065 hasBestOaLocation W23176430651 @default.
- W2317643065 hasConcept C107872376 @default.
- W2317643065 hasConcept C109931610 @default.
- W2317643065 hasConcept C121332964 @default.
- W2317643065 hasConcept C158787203 @default.
- W2317643065 hasConcept C185059815 @default.
- W2317643065 hasConcept C185592680 @default.
- W2317643065 hasConcept C18903297 @default.
- W2317643065 hasConcept C22117777 @default.
- W2317643065 hasConcept C2776093933 @default.
- W2317643065 hasConcept C2777267774 @default.
- W2317643065 hasConcept C51813073 @default.
- W2317643065 hasConcept C62520636 @default.