Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317691010> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2317691010 endingPage "319" @default.
- W2317691010 startingPage "298" @default.
- W2317691010 abstract "Abstract Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or events, where each asset or event is modelled as a random variable. Applications include insurance, operational risk, stress testing and sensitivity analysis. In practice, the sum of a set of random variables involves the use of two well-known mathematical operations: n-fold convolution (for a fixed number n ) and N-fold convolution, defined as the compound sum of a frequency distribution N and a severity distribution, where the number of constant n-fold convolutions is determined by N , where the severity and frequency variables are independent, and continuous, currently numerical solutions such as, Panjer’s recursion, fast Fourier transforms and Monte Carlo simulation produce acceptable results. However, they have not been designed to cope with new modelling challenges that require hybrid models containing discrete explanatory (regime switching) variables or where discrete and continuous variables are inter-dependent and may influence the severity and frequency in complex, non-linear, ways. This paper describes a Bayesian Factorisation and Elimination (BFE) algorithm that performs convolution on the hybrid models required to aggregate risk in the presence of causal dependencies. This algorithm exploits a number of advances from the field of Bayesian Networks, covering methods to approximate statistical and conditionally deterministic functions to factorise multivariate distributions for efficient computation. Experiments show that BFE is as accurate on conventional problems as competing methods. For more difficult hybrid problems BFE can provide a more general solution that the others cannot offer. In addition, the BFE approach can be easily extended to perform deconvolution for the purposes of stress testing and sensitivity analysis in a way that competing methods do not." @default.
- W2317691010 created "2016-06-24" @default.
- W2317691010 creator A5046172297 @default.
- W2317691010 creator A5069178881 @default.
- W2317691010 creator A5076425537 @default.
- W2317691010 date "2014-08-26" @default.
- W2317691010 modified "2023-09-26" @default.
- W2317691010 title "Risk aggregation in the presence of discrete causally connected random variables" @default.
- W2317691010 cites W1989164152 @default.
- W2317691010 cites W1989926363 @default.
- W2317691010 cites W1994712077 @default.
- W2317691010 cites W2008312103 @default.
- W2317691010 cites W2016980223 @default.
- W2317691010 cites W2037434525 @default.
- W2317691010 cites W2076700146 @default.
- W2317691010 cites W2084698324 @default.
- W2317691010 cites W2106961120 @default.
- W2317691010 cites W2150576268 @default.
- W2317691010 cites W2156812602 @default.
- W2317691010 cites W4229739412 @default.
- W2317691010 cites W4236354166 @default.
- W2317691010 cites W4298191365 @default.
- W2317691010 doi "https://doi.org/10.1017/s1748499514000098" @default.
- W2317691010 hasPublicationYear "2014" @default.
- W2317691010 type Work @default.
- W2317691010 sameAs 2317691010 @default.
- W2317691010 citedByCount "10" @default.
- W2317691010 countsByYear W23176910102016 @default.
- W2317691010 countsByYear W23176910102018 @default.
- W2317691010 countsByYear W23176910102020 @default.
- W2317691010 countsByYear W23176910102021 @default.
- W2317691010 countsByYear W23176910102022 @default.
- W2317691010 countsByYear W23176910102023 @default.
- W2317691010 crossrefType "journal-article" @default.
- W2317691010 hasAuthorship W2317691010A5046172297 @default.
- W2317691010 hasAuthorship W2317691010A5069178881 @default.
- W2317691010 hasAuthorship W2317691010A5076425537 @default.
- W2317691010 hasBestOaLocation W23176910102 @default.
- W2317691010 hasConcept C105795698 @default.
- W2317691010 hasConcept C11413529 @default.
- W2317691010 hasConcept C119857082 @default.
- W2317691010 hasConcept C122123141 @default.
- W2317691010 hasConcept C126255220 @default.
- W2317691010 hasConcept C19499675 @default.
- W2317691010 hasConcept C28826006 @default.
- W2317691010 hasConcept C33923547 @default.
- W2317691010 hasConcept C41008148 @default.
- W2317691010 hasConcept C45347329 @default.
- W2317691010 hasConcept C50644808 @default.
- W2317691010 hasConceptScore W2317691010C105795698 @default.
- W2317691010 hasConceptScore W2317691010C11413529 @default.
- W2317691010 hasConceptScore W2317691010C119857082 @default.
- W2317691010 hasConceptScore W2317691010C122123141 @default.
- W2317691010 hasConceptScore W2317691010C126255220 @default.
- W2317691010 hasConceptScore W2317691010C19499675 @default.
- W2317691010 hasConceptScore W2317691010C28826006 @default.
- W2317691010 hasConceptScore W2317691010C33923547 @default.
- W2317691010 hasConceptScore W2317691010C41008148 @default.
- W2317691010 hasConceptScore W2317691010C45347329 @default.
- W2317691010 hasConceptScore W2317691010C50644808 @default.
- W2317691010 hasIssue "2" @default.
- W2317691010 hasLocation W23176910101 @default.
- W2317691010 hasLocation W23176910102 @default.
- W2317691010 hasLocation W23176910103 @default.
- W2317691010 hasOpenAccess W2317691010 @default.
- W2317691010 hasPrimaryLocation W23176910101 @default.
- W2317691010 hasRelatedWork W1510664952 @default.
- W2317691010 hasRelatedWork W1995555892 @default.
- W2317691010 hasRelatedWork W2043057586 @default.
- W2317691010 hasRelatedWork W2071794268 @default.
- W2317691010 hasRelatedWork W2073495840 @default.
- W2317691010 hasRelatedWork W2100419804 @default.
- W2317691010 hasRelatedWork W2334093999 @default.
- W2317691010 hasRelatedWork W2594599357 @default.
- W2317691010 hasRelatedWork W2937560759 @default.
- W2317691010 hasRelatedWork W3134991707 @default.
- W2317691010 hasVolume "8" @default.
- W2317691010 isParatext "false" @default.
- W2317691010 isRetracted "false" @default.
- W2317691010 magId "2317691010" @default.
- W2317691010 workType "article" @default.