Matches in SemOpenAlex for { <https://semopenalex.org/work/W2317998925> ?p ?o ?g. }
- W2317998925 endingPage "8359" @default.
- W2317998925 startingPage "8349" @default.
- W2317998925 abstract "Intermetallic phases remain a large class of compounds whose vast structural diversity is unaccounted for by chemical theory. A recent resurgence of interest in intermetallics, due to their potential in such applications as catalysis and thermoelectricity, has intensified the need for models connecting their compositions to their structures and stability. In this Article, we illustrate how the μ3-acidity model, an extension of the acid/base concept based on the Method of Moments, offers intuitive explanations for puzzling structural progressions occurring in intermetallics formed between transition metals. Simple CsCl-type structures are frequently observed for phases with near 1:1 ratios of transition metals. However, in two compounds, TiCu and Ti21Mn25, structures are adopted which deviate from this norm. μ3-Acidity analysis shows that the formation of CsCl-type phases in these exceptional systems would yield an imbalance in the acid/base strength pairing, resulting in overneutralization of the weaker partner and thus instability. Intriguing geometrical features emerge in response, which serve to improve the neutralization of the constituent elements. In both TiCu and Ti21Mn25, part of the structure shields weaker acids or bases from their stronger partners by enhancing homoatomic bonding in the sublattice of the weaker acid or base. In TiCu, this protection is accomplished by developing doubled layers of Ti atoms to reduce their heteroatomic contacts. In Ti21Mn25 the structural response is more extreme: Ti-poor TiMn2 domains are formed to guard Mn from the Ti atoms, while the remaining Ti segregates to regions between the TiMn2 domains. The geometrical details of this arrangement fine-tune the acid/base interactions for an even greater level of stability. The most striking of these occurs in the Ti-rich region, where a paucity of Mn neighbors leads to difficulty in achieving strong neutralization. The Ti atoms arrange themselves in helical tubes, maximizing the surface area for Ti-Mn interactions. Through these examples, we show how the μ3-acidity model provides simple explanations for some of the beautiful structural motifs observed in intermetallic crystals. The foundation of the model in the Method of Moments makes it applicable to a variety of other contexts, including glasses, defects, and nanostructured surfaces." @default.
- W2317998925 created "2016-06-24" @default.
- W2317998925 creator A5025005638 @default.
- W2317998925 creator A5084305059 @default.
- W2317998925 date "2013-01-31" @default.
- W2317998925 modified "2023-09-26" @default.
- W2317998925 title "Structural Acid–Base Chemistry in the Metallic State: How μ<sub>3</sub>-Neutralization Drives Interfaces and Helices in Ti<sub>21</sub>Mn<sub>25</sub>" @default.
- W2317998925 cites W1968133542 @default.
- W2317998925 cites W1970127494 @default.
- W2317998925 cites W1970584463 @default.
- W2317998925 cites W1975383995 @default.
- W2317998925 cites W1978582182 @default.
- W2317998925 cites W1979544533 @default.
- W2317998925 cites W1981004018 @default.
- W2317998925 cites W1982223642 @default.
- W2317998925 cites W1983199452 @default.
- W2317998925 cites W1984112249 @default.
- W2317998925 cites W1990005356 @default.
- W2317998925 cites W1990905078 @default.
- W2317998925 cites W1997306121 @default.
- W2317998925 cites W1997634886 @default.
- W2317998925 cites W1997898286 @default.
- W2317998925 cites W1998866028 @default.
- W2317998925 cites W2001280619 @default.
- W2317998925 cites W2005858501 @default.
- W2317998925 cites W2007174718 @default.
- W2317998925 cites W2007395042 @default.
- W2317998925 cites W2007522946 @default.
- W2317998925 cites W2013691110 @default.
- W2317998925 cites W2018349589 @default.
- W2317998925 cites W2020298029 @default.
- W2317998925 cites W2021009705 @default.
- W2317998925 cites W2022313349 @default.
- W2317998925 cites W2024216229 @default.
- W2317998925 cites W2026975368 @default.
- W2317998925 cites W2027663585 @default.
- W2317998925 cites W2033068860 @default.
- W2317998925 cites W2034225472 @default.
- W2317998925 cites W2036292595 @default.
- W2317998925 cites W2038059896 @default.
- W2317998925 cites W2041393814 @default.
- W2317998925 cites W2042653297 @default.
- W2317998925 cites W2042912883 @default.
- W2317998925 cites W2044392401 @default.
- W2317998925 cites W2048135370 @default.
- W2317998925 cites W2049190555 @default.
- W2317998925 cites W2052512097 @default.
- W2317998925 cites W2056505885 @default.
- W2317998925 cites W2056512562 @default.
- W2317998925 cites W2056636696 @default.
- W2317998925 cites W2058586652 @default.
- W2317998925 cites W2062172813 @default.
- W2317998925 cites W2067662113 @default.
- W2317998925 cites W2069230971 @default.
- W2317998925 cites W2077729566 @default.
- W2317998925 cites W2079105963 @default.
- W2317998925 cites W2083222334 @default.
- W2317998925 cites W2087698390 @default.
- W2317998925 cites W2088043604 @default.
- W2317998925 cites W2092764862 @default.
- W2317998925 cites W2093294176 @default.
- W2317998925 cites W2093914988 @default.
- W2317998925 cites W2096625698 @default.
- W2317998925 cites W2099733554 @default.
- W2317998925 cites W2103395171 @default.
- W2317998925 cites W2103642631 @default.
- W2317998925 cites W2108439616 @default.
- W2317998925 cites W2109610408 @default.
- W2317998925 cites W2120631236 @default.
- W2317998925 cites W2124976598 @default.
- W2317998925 cites W2142841029 @default.
- W2317998925 cites W2148596493 @default.
- W2317998925 cites W2161701532 @default.
- W2317998925 cites W2313751730 @default.
- W2317998925 cites W2319929680 @default.
- W2317998925 cites W2322373020 @default.
- W2317998925 cites W2503005323 @default.
- W2317998925 cites W3206606417 @default.
- W2317998925 cites W4240192155 @default.
- W2317998925 cites W4240558739 @default.
- W2317998925 doi "https://doi.org/10.1021/ic302619h" @default.
- W2317998925 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23368733" @default.
- W2317998925 hasPublicationYear "2013" @default.
- W2317998925 type Work @default.
- W2317998925 sameAs 2317998925 @default.
- W2317998925 citedByCount "9" @default.
- W2317998925 countsByYear W23179989252014 @default.
- W2317998925 countsByYear W23179989252015 @default.
- W2317998925 countsByYear W23179989252016 @default.
- W2317998925 countsByYear W23179989252017 @default.
- W2317998925 countsByYear W23179989252021 @default.
- W2317998925 countsByYear W23179989252022 @default.
- W2317998925 crossrefType "journal-article" @default.
- W2317998925 hasAuthorship W2317998925A5025005638 @default.
- W2317998925 hasAuthorship W2317998925A5084305059 @default.
- W2317998925 hasConcept C106773901 @default.
- W2317998925 hasConcept C121332964 @default.
- W2317998925 hasConcept C134306372 @default.