Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318043554> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2318043554 endingPage "483" @default.
- W2318043554 startingPage "483" @default.
- W2318043554 abstract "SUMMARY An algorithm is described for smoothing data points on the plane. The observation region is divided into cells and each group of four adjoining cells is tested to see whether it can be accepted that the values in the cells come from a distribution with the same underlying value of the parameters. If so, the cells are grouped again in a further round of smoothing. If not, the original values are retained and no further smoothing involving those cells takes place. The method is applied to the following situations: count data assumed to follow a nonhomogeneous Poisson process and count data assumed to follow a negative binomial process with nonhomogeneous rate. This paper had its origins in the attempt to define appropriate smoothing procedures for counts of clustered data in two dimensions, where it could be assumed that there was present both some large-scale spatial variation in the count rate as well as local variation due to clustering. There is of course no method of finally distinguishing between these two types of spatial inhomogeneity, purely on the basis of the data. It is perfectly logically consistent to treat a set of points either as a sample from a Poisson process with rapidly varying density function, or as a sample from a spatially homogeneous clustering process (Bartlett, 1964). Any method for discriminating between the two hypotheses must therefore be based, whether explicitly or otherwise, on some prior assumptions concerning the likely extent of clustering on the one hand or of departures from spatial inhomogeneity on the other. This paper describes a straightforward and computationally rapid algorithm that will allow the user to obtain an impression of the underlying spatial pattern on simple assumptions concerning the nature and extent of local clustering. At the first step in the algorithm, the user nominates a cell size to indicate the dimensions of local spatial clustering. This should be as small as possible while still consistent with the assumption that observations in disjoint cells may be regarded as independently generated. The choice is not very critical, but if chosen too small the procedure will identify as spatial heterogeneity features the user might prefer to regard as clusters. The observation region, supposed to be rectangular, is then divided into cells, the number of divisions along each dimension being equal to some power of 2. Typically, 64 x 64 or 32 x 32 divisions form convenient starting points. For convenience of plotting, the output" @default.
- W2318043554 created "2016-06-24" @default.
- W2318043554 creator A5011169083 @default.
- W2318043554 creator A5028028833 @default.
- W2318043554 date "1986-09-01" @default.
- W2318043554 modified "2023-10-17" @default.
- W2318043554 title "A Variable-Grid Algorithm for Smoothing Clustered Data" @default.
- W2318043554 cites W1490441963 @default.
- W2318043554 cites W2143076195 @default.
- W2318043554 cites W2182173776 @default.
- W2318043554 cites W2312451000 @default.
- W2318043554 cites W2334381056 @default.
- W2318043554 cites W2402096839 @default.
- W2318043554 doi "https://doi.org/10.2307/2531199" @default.
- W2318043554 hasPublicationYear "1986" @default.
- W2318043554 type Work @default.
- W2318043554 sameAs 2318043554 @default.
- W2318043554 citedByCount "12" @default.
- W2318043554 countsByYear W23180435542012 @default.
- W2318043554 countsByYear W23180435542015 @default.
- W2318043554 countsByYear W23180435542017 @default.
- W2318043554 countsByYear W23180435542022 @default.
- W2318043554 countsByYear W23180435542023 @default.
- W2318043554 crossrefType "journal-article" @default.
- W2318043554 hasAuthorship W2318043554A5011169083 @default.
- W2318043554 hasAuthorship W2318043554A5028028833 @default.
- W2318043554 hasConcept C11413529 @default.
- W2318043554 hasConcept C134306372 @default.
- W2318043554 hasConcept C182365436 @default.
- W2318043554 hasConcept C187691185 @default.
- W2318043554 hasConcept C2524010 @default.
- W2318043554 hasConcept C31972630 @default.
- W2318043554 hasConcept C33923547 @default.
- W2318043554 hasConcept C3770464 @default.
- W2318043554 hasConcept C41008148 @default.
- W2318043554 hasConceptScore W2318043554C11413529 @default.
- W2318043554 hasConceptScore W2318043554C134306372 @default.
- W2318043554 hasConceptScore W2318043554C182365436 @default.
- W2318043554 hasConceptScore W2318043554C187691185 @default.
- W2318043554 hasConceptScore W2318043554C2524010 @default.
- W2318043554 hasConceptScore W2318043554C31972630 @default.
- W2318043554 hasConceptScore W2318043554C33923547 @default.
- W2318043554 hasConceptScore W2318043554C3770464 @default.
- W2318043554 hasConceptScore W2318043554C41008148 @default.
- W2318043554 hasIssue "3" @default.
- W2318043554 hasLocation W23180435541 @default.
- W2318043554 hasOpenAccess W2318043554 @default.
- W2318043554 hasPrimaryLocation W23180435541 @default.
- W2318043554 hasRelatedWork W1978572805 @default.
- W2318043554 hasRelatedWork W1987225439 @default.
- W2318043554 hasRelatedWork W1989941125 @default.
- W2318043554 hasRelatedWork W1997992934 @default.
- W2318043554 hasRelatedWork W2051487156 @default.
- W2318043554 hasRelatedWork W2084164645 @default.
- W2318043554 hasRelatedWork W2149980199 @default.
- W2318043554 hasRelatedWork W2383807498 @default.
- W2318043554 hasRelatedWork W2748952813 @default.
- W2318043554 hasRelatedWork W2899084033 @default.
- W2318043554 hasVolume "42" @default.
- W2318043554 isParatext "false" @default.
- W2318043554 isRetracted "false" @default.
- W2318043554 magId "2318043554" @default.
- W2318043554 workType "article" @default.