Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318063982> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2318063982 abstract "Accurate and objective rust defect assessment is required to maintain a good-quality steel bridge painting surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. Previously developed image recognition methods for painting rust defect assessment can be summarized as two: the NFRA (Neuro-Fuzzy Recognition Approach) method and the SKMA (Simplified K-Means Algorithm) method. The NFRA method uses artificial intelligence techniques to separate rust pixels from background pixels. The SKMA method segments object pixels and background pixels in a digitized image using a statistical method, called the K-means algorithm. Even if both methods pass through different processing procedures, one common thing is that they first convert original color images to grayscale images and further process the grayscale images. This article presents the application of previously developed image processing methods for painting rust defect evaluations and discusses their limitations under several specific environmental conditions which are often encountered while acquiring digital images." @default.
- W2318063982 created "2016-06-24" @default.
- W2318063982 creator A5049407736 @default.
- W2318063982 creator A5057268119 @default.
- W2318063982 date "2005-06-24" @default.
- W2318063982 modified "2023-10-18" @default.
- W2318063982 title "Digital Image Processing Methods for Assessing Bridge Painting Rust Defects and Their Limitations" @default.
- W2318063982 cites W2098013097 @default.
- W2318063982 cites W2127420261 @default.
- W2318063982 doi "https://doi.org/10.1061/40794(179)80" @default.
- W2318063982 hasPublicationYear "2005" @default.
- W2318063982 type Work @default.
- W2318063982 sameAs 2318063982 @default.
- W2318063982 citedByCount "7" @default.
- W2318063982 countsByYear W23180639822013 @default.
- W2318063982 countsByYear W23180639822016 @default.
- W2318063982 countsByYear W23180639822021 @default.
- W2318063982 countsByYear W23180639822022 @default.
- W2318063982 crossrefType "proceedings-article" @default.
- W2318063982 hasAuthorship W2318063982A5049407736 @default.
- W2318063982 hasAuthorship W2318063982A5057268119 @default.
- W2318063982 hasConcept C100776233 @default.
- W2318063982 hasConcept C104317675 @default.
- W2318063982 hasConcept C115961682 @default.
- W2318063982 hasConcept C124504099 @default.
- W2318063982 hasConcept C126322002 @default.
- W2318063982 hasConcept C154945302 @default.
- W2318063982 hasConcept C160633673 @default.
- W2318063982 hasConcept C193828747 @default.
- W2318063982 hasConcept C197781089 @default.
- W2318063982 hasConcept C199360897 @default.
- W2318063982 hasConcept C31972630 @default.
- W2318063982 hasConcept C41008148 @default.
- W2318063982 hasConcept C42781572 @default.
- W2318063982 hasConcept C71924100 @default.
- W2318063982 hasConcept C78201319 @default.
- W2318063982 hasConcept C9417928 @default.
- W2318063982 hasConceptScore W2318063982C100776233 @default.
- W2318063982 hasConceptScore W2318063982C104317675 @default.
- W2318063982 hasConceptScore W2318063982C115961682 @default.
- W2318063982 hasConceptScore W2318063982C124504099 @default.
- W2318063982 hasConceptScore W2318063982C126322002 @default.
- W2318063982 hasConceptScore W2318063982C154945302 @default.
- W2318063982 hasConceptScore W2318063982C160633673 @default.
- W2318063982 hasConceptScore W2318063982C193828747 @default.
- W2318063982 hasConceptScore W2318063982C197781089 @default.
- W2318063982 hasConceptScore W2318063982C199360897 @default.
- W2318063982 hasConceptScore W2318063982C31972630 @default.
- W2318063982 hasConceptScore W2318063982C41008148 @default.
- W2318063982 hasConceptScore W2318063982C42781572 @default.
- W2318063982 hasConceptScore W2318063982C71924100 @default.
- W2318063982 hasConceptScore W2318063982C78201319 @default.
- W2318063982 hasConceptScore W2318063982C9417928 @default.
- W2318063982 hasLocation W23180639821 @default.
- W2318063982 hasOpenAccess W2318063982 @default.
- W2318063982 hasPrimaryLocation W23180639821 @default.
- W2318063982 hasRelatedWork W2049527208 @default.
- W2318063982 hasRelatedWork W2080625741 @default.
- W2318063982 hasRelatedWork W2593407077 @default.
- W2318063982 hasRelatedWork W2803553636 @default.
- W2318063982 hasRelatedWork W2911390569 @default.
- W2318063982 hasRelatedWork W2912650610 @default.
- W2318063982 hasRelatedWork W2981327315 @default.
- W2318063982 hasRelatedWork W2998623414 @default.
- W2318063982 hasRelatedWork W3186605777 @default.
- W2318063982 hasRelatedWork W4312753625 @default.
- W2318063982 isParatext "false" @default.
- W2318063982 isRetracted "false" @default.
- W2318063982 magId "2318063982" @default.
- W2318063982 workType "article" @default.