Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318083403> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2318083403 endingPage "99" @default.
- W2318083403 startingPage "93" @default.
- W2318083403 abstract "The goal of data mining is to extract the knowledge from data. It is also a form of knowledge discovery essential for solving problem in a specific domain. This paper presents a novel approach to data clustering and classification problem. Clustering analysis is distribution of data into groups of similar objects and Classification focuses the data on the class boundaries. This research explores three different bio-inspired metaheuristic algorithms in the clustering problem: Ant Colony Optimization (ACO), Genetic Algorithms (GAs) and Artificial Immune Systems (AIS). Data mining approaches are applied in the field of medical diagnosis recently. The major class of problem in medical science involves diagnosis of disease based upon various tests. The computerized diagnostic tools are helpful to predict the diagnosis accurately. Breast cancer is one the most dangerous cancer type in the world. Early detection can save a life and increase survivability of the patients. This of research work analysed the performance of GA, ACO and AIS with ID3 for solving data clustering and classification problem in an experiment with Breast Cancer Dataset data of UCI repository. An efficient ID3 Decision tree based classification techniques are used to measure the performance of the system with GA, ACO and AIS system. Proposed AIS system produces the best classification result than the ACO and GA based decision tree ID3 classifiers. Instead of K-means clustering, this research work combines the simplicity of K-means algorithm with the robustness of AGA-Miner. This proposed approach has potential applications in hospital for decision-making and analyze/ research such as predictive medicine." @default.
- W2318083403 created "2016-06-24" @default.
- W2318083403 creator A5043609533 @default.
- W2318083403 creator A5067312792 @default.
- W2318083403 date "2014-01-10" @default.
- W2318083403 modified "2023-10-14" @default.
- W2318083403 title "Impact of Bio-inspired metaheuristics in the data clustering problem" @default.
- W2318083403 cites W1528076390 @default.
- W2318083403 cites W1551186452 @default.
- W2318083403 cites W1664695950 @default.
- W2318083403 cites W2004020960 @default.
- W2318083403 cites W2107941094 @default.
- W2318083403 cites W2159945133 @default.
- W2318083403 cites W2900902836 @default.
- W2318083403 doi "https://doi.org/10.7753/ijcatr0302.1002" @default.
- W2318083403 hasPublicationYear "2014" @default.
- W2318083403 type Work @default.
- W2318083403 sameAs 2318083403 @default.
- W2318083403 citedByCount "0" @default.
- W2318083403 crossrefType "journal-article" @default.
- W2318083403 hasAuthorship W2318083403A5043609533 @default.
- W2318083403 hasAuthorship W2318083403A5067312792 @default.
- W2318083403 hasConcept C109718341 @default.
- W2318083403 hasConcept C126255220 @default.
- W2318083403 hasConcept C154945302 @default.
- W2318083403 hasConcept C33923547 @default.
- W2318083403 hasConcept C41008148 @default.
- W2318083403 hasConcept C73555534 @default.
- W2318083403 hasConceptScore W2318083403C109718341 @default.
- W2318083403 hasConceptScore W2318083403C126255220 @default.
- W2318083403 hasConceptScore W2318083403C154945302 @default.
- W2318083403 hasConceptScore W2318083403C33923547 @default.
- W2318083403 hasConceptScore W2318083403C41008148 @default.
- W2318083403 hasConceptScore W2318083403C73555534 @default.
- W2318083403 hasIssue "2" @default.
- W2318083403 hasLocation W23180834031 @default.
- W2318083403 hasOpenAccess W2318083403 @default.
- W2318083403 hasPrimaryLocation W23180834031 @default.
- W2318083403 hasRelatedWork W1939200287 @default.
- W2318083403 hasRelatedWork W1974487164 @default.
- W2318083403 hasRelatedWork W1984180799 @default.
- W2318083403 hasRelatedWork W1999627569 @default.
- W2318083403 hasRelatedWork W2913529671 @default.
- W2318083403 hasRelatedWork W3011685885 @default.
- W2318083403 hasRelatedWork W3107474891 @default.
- W2318083403 hasRelatedWork W3154623308 @default.
- W2318083403 hasRelatedWork W4324285136 @default.
- W2318083403 hasRelatedWork W763609066 @default.
- W2318083403 hasVolume "3" @default.
- W2318083403 isParatext "false" @default.
- W2318083403 isRetracted "false" @default.
- W2318083403 magId "2318083403" @default.
- W2318083403 workType "article" @default.