Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318117916> ?p ?o ?g. }
- W2318117916 endingPage "023003" @default.
- W2318117916 startingPage "023003" @default.
- W2318117916 abstract "Scatterometry is a fast, precise and low cost way to determine the mean pitch and dimensional parameters of periodic structures with lateral resolution of a few nanometer. It is robust enough for in-line process control and precise and accurate enough for metrology measurements. Furthermore, scatterometry is a non-destructive technique capable of measuring buried structures, for example a grating covered by a thick oxide layer. As scatterometry is a non-imaging technique, mathematical modeling is needed to retrieve structural parameters that describe a surface. In this review, the three main steps of scatterometry are discussed: the data acquisition, the simulation of diffraction efficiencies and the comparison of data and simulations. First, the intensity of the diffracted light is measured with a scatterometer as a function of incoming angle, diffraction angle and/or wavelength. We discuss the evolution of the scatterometers from the earliest angular scatterometers to the new imaging scatterometers. The basic principle of measuring diffraction efficiencies in scatterometry has remained the same since the beginning, but the instrumental improvements have made scatterometry a state-of-the-art solution for fast and accurate measurements of nano-textured surfaces. The improvements include extending the wavelength range from the visible to the extreme ultra-violet range, development of Fourier optics to measure all diffraction orders simultaneously, and an imaging scatterometer to measure area of interests smaller than the spot size. Secondly, computer simulations of the diffraction efficiencies are discussed with emphasis on the rigorous coupled-wave analysis (RCWA) method. RCWA has, since the mid-1990s, been the preferred method for grating simulations due to the speed of the algorithms. In the beginning the RCWA method suffered from a very slow convergence rate, and we discuss the historical improvements to overcome this challenge, e.g. by the introduction of Li's factorization rules and the introduction of the normal vector method. The third step is the comparison, where the simulated diffraction efficiencies are compared to the experimental data using an inverse modeling approach. We discuss both a direct optimization scheme using a differential evolution algorithm and a library search strategy where diffraction efficiences of expected structures are collected in a database. For metrology measurements two methods are described for estimating the uncertainty of the fitting parameters. The first method is based on estimating the confidence limits using constant chi square boundaries, which can easily be computed when using the library search strategy. The other method is based on calculating the covariances of all the free parameters using a least square optimization. Scatterometry is already utilized in the semiconductor industry for in-line characterization. However, it also has a large potential for other industrial sectors, including sectors making use of injection molding or roll-2-roll fabrication. Using the library search strategy, the comparison can be performed in ms, making in-line characterization possible and we demonstrate that scatterometry can be used for quality control of injection molded nano-textured plastic samples. With the emerging methods of highly parallel manufacturing of nano-textured devices, scatterometry has great potential to deliver a characterization method for in-line quality control and metrology measurements, which is not possible with conventional characterization techniques. However, there are some open challenges for the scatterometry techniques. These include corrections for measuring on non-ideal samples with a large surface roughness or line-edge roughness and the path towards performing traceable scatterometry measurements." @default.
- W2318117916 created "2016-06-24" @default.
- W2318117916 creator A5040629780 @default.
- W2318117916 creator A5072117418 @default.
- W2318117916 date "2016-04-05" @default.
- W2318117916 modified "2023-10-16" @default.
- W2318117916 title "Scatterometry—fast and robust measurements of nano-textured surfaces" @default.
- W2318117916 cites W1496847388 @default.
- W2318117916 cites W1512303280 @default.
- W2318117916 cites W1595159159 @default.
- W2318117916 cites W1631089133 @default.
- W2318117916 cites W1777151243 @default.
- W2318117916 cites W1965720004 @default.
- W2318117916 cites W1965977758 @default.
- W2318117916 cites W1966986494 @default.
- W2318117916 cites W1969355640 @default.
- W2318117916 cites W1972626181 @default.
- W2318117916 cites W1977675747 @default.
- W2318117916 cites W1978068540 @default.
- W2318117916 cites W1980269750 @default.
- W2318117916 cites W1980499836 @default.
- W2318117916 cites W1980690071 @default.
- W2318117916 cites W1980985654 @default.
- W2318117916 cites W1981933992 @default.
- W2318117916 cites W1982187497 @default.
- W2318117916 cites W1984812753 @default.
- W2318117916 cites W1985231831 @default.
- W2318117916 cites W1987002745 @default.
- W2318117916 cites W1987413850 @default.
- W2318117916 cites W1991404852 @default.
- W2318117916 cites W1996709914 @default.
- W2318117916 cites W1998009932 @default.
- W2318117916 cites W1998117153 @default.
- W2318117916 cites W2002046504 @default.
- W2318117916 cites W2002190158 @default.
- W2318117916 cites W2003167464 @default.
- W2318117916 cites W2003328021 @default.
- W2318117916 cites W2007971416 @default.
- W2318117916 cites W2008062057 @default.
- W2318117916 cites W2010302519 @default.
- W2318117916 cites W2011748121 @default.
- W2318117916 cites W2012704500 @default.
- W2318117916 cites W2017163293 @default.
- W2318117916 cites W2017434203 @default.
- W2318117916 cites W2018890340 @default.
- W2318117916 cites W2022282010 @default.
- W2318117916 cites W2026662295 @default.
- W2318117916 cites W2027747056 @default.
- W2318117916 cites W2028730943 @default.
- W2318117916 cites W2028737698 @default.
- W2318117916 cites W2029872253 @default.
- W2318117916 cites W2030350150 @default.
- W2318117916 cites W2031595827 @default.
- W2318117916 cites W2036435789 @default.
- W2318117916 cites W2043620862 @default.
- W2318117916 cites W2043815305 @default.
- W2318117916 cites W2044696641 @default.
- W2318117916 cites W2046576399 @default.
- W2318117916 cites W2047602908 @default.
- W2318117916 cites W2048521851 @default.
- W2318117916 cites W2049709183 @default.
- W2318117916 cites W2052744466 @default.
- W2318117916 cites W2052951180 @default.
- W2318117916 cites W2054506893 @default.
- W2318117916 cites W2055072166 @default.
- W2318117916 cites W2056350008 @default.
- W2318117916 cites W2059324384 @default.
- W2318117916 cites W2059624291 @default.
- W2318117916 cites W2059878712 @default.
- W2318117916 cites W2060612859 @default.
- W2318117916 cites W2061362651 @default.
- W2318117916 cites W2062182733 @default.
- W2318117916 cites W2066384825 @default.
- W2318117916 cites W2066966906 @default.
- W2318117916 cites W2067006558 @default.
- W2318117916 cites W2071095527 @default.
- W2318117916 cites W2075782330 @default.
- W2318117916 cites W2078133181 @default.
- W2318117916 cites W2081020148 @default.
- W2318117916 cites W2084540419 @default.
- W2318117916 cites W2086459821 @default.
- W2318117916 cites W2086591823 @default.
- W2318117916 cites W2087322350 @default.
- W2318117916 cites W2090656252 @default.
- W2318117916 cites W2091686886 @default.
- W2318117916 cites W2092420787 @default.
- W2318117916 cites W2094589776 @default.
- W2318117916 cites W2097852139 @default.
- W2318117916 cites W2099352213 @default.
- W2318117916 cites W2102080816 @default.
- W2318117916 cites W2106044318 @default.
- W2318117916 cites W2116057883 @default.
- W2318117916 cites W2118562793 @default.
- W2318117916 cites W2118914178 @default.
- W2318117916 cites W2122414792 @default.
- W2318117916 cites W2123119571 @default.
- W2318117916 cites W2126734608 @default.
- W2318117916 cites W2128074892 @default.