Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318402017> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2318402017 endingPage "22" @default.
- W2318402017 startingPage "17" @default.
- W2318402017 abstract "Satellite communications is growing rapidly in various fields like GPS. In general satellite gives the information in the form of images and videos. This data is often corrupted during acquisition, transmission or due to faulty memory locations in hardware. This creates loss of information. The noise density varies depending on various factors namely reflective surfaces, atmospheric variations, noisy communication channels etc. The main noise effecting the satellite data is Impulse noise. In this paper an algorithm is developed to remove the impulse noise in the video captured by satellites. In this paper a video captured by different sensors at same time instant with impulse noise are considered and as order statistics filters exhibit better performance, these noisy videos are filtered individually using non linear filtering algorithms namely, Vector Median Filter (VMF), Rank Conditioned VMF (RCVMF), Rank conditioned and Threshold VMF (RCTVMF) and Absolute Deviation VMF (ADVMF) . These filtered videos from individual filtering methods are combined to a single video called video fusion, which retains the important features of the frames in the video and thereby not only removing the noise but also preserve the finer details of image hence increase the quality of the image . In this paper the filtered frames from the captured video are fused into a single video by using the video fusion technique which is based on the quality assessment in spatial domain. For future enhancement in the video this fused video is again filtered using absolute deviation VMF which gives best result than the fused and filtered videos. The performance evaluation of the filtered and the fused video with respect to the original video is done using mean square error(MSE), peak signal to noise ratio(PSNR) and structural similarity index(SSIM)." @default.
- W2318402017 created "2016-06-24" @default.
- W2318402017 creator A5062333436 @default.
- W2318402017 date "2012-10-01" @default.
- W2318402017 modified "2023-09-26" @default.
- W2318402017 title "Development of Video Fusion Algorithm at Frame Level for Removal of Impulse Noise" @default.
- W2318402017 cites W2050002311 @default.
- W2318402017 cites W2149072817 @default.
- W2318402017 cites W2498840900 @default.
- W2318402017 doi "https://doi.org/10.9790/3021-021051722" @default.
- W2318402017 hasPublicationYear "2012" @default.
- W2318402017 type Work @default.
- W2318402017 sameAs 2318402017 @default.
- W2318402017 citedByCount "0" @default.
- W2318402017 crossrefType "journal-article" @default.
- W2318402017 hasAuthorship W2318402017A5062333436 @default.
- W2318402017 hasBestOaLocation W23184020171 @default.
- W2318402017 hasConcept C121332964 @default.
- W2318402017 hasConcept C126042441 @default.
- W2318402017 hasConcept C127372701 @default.
- W2318402017 hasConcept C138885662 @default.
- W2318402017 hasConcept C154945302 @default.
- W2318402017 hasConcept C158525013 @default.
- W2318402017 hasConcept C160633673 @default.
- W2318402017 hasConcept C31972630 @default.
- W2318402017 hasConcept C41008148 @default.
- W2318402017 hasConcept C41895202 @default.
- W2318402017 hasConcept C62520636 @default.
- W2318402017 hasConcept C70836080 @default.
- W2318402017 hasConcept C76155785 @default.
- W2318402017 hasConceptScore W2318402017C121332964 @default.
- W2318402017 hasConceptScore W2318402017C126042441 @default.
- W2318402017 hasConceptScore W2318402017C127372701 @default.
- W2318402017 hasConceptScore W2318402017C138885662 @default.
- W2318402017 hasConceptScore W2318402017C154945302 @default.
- W2318402017 hasConceptScore W2318402017C158525013 @default.
- W2318402017 hasConceptScore W2318402017C160633673 @default.
- W2318402017 hasConceptScore W2318402017C31972630 @default.
- W2318402017 hasConceptScore W2318402017C41008148 @default.
- W2318402017 hasConceptScore W2318402017C41895202 @default.
- W2318402017 hasConceptScore W2318402017C62520636 @default.
- W2318402017 hasConceptScore W2318402017C70836080 @default.
- W2318402017 hasConceptScore W2318402017C76155785 @default.
- W2318402017 hasIssue "10" @default.
- W2318402017 hasLocation W23184020171 @default.
- W2318402017 hasOpenAccess W2318402017 @default.
- W2318402017 hasPrimaryLocation W23184020171 @default.
- W2318402017 hasRelatedWork W1967456564 @default.
- W2318402017 hasRelatedWork W2080322084 @default.
- W2318402017 hasRelatedWork W2144655638 @default.
- W2318402017 hasRelatedWork W2588505718 @default.
- W2318402017 hasRelatedWork W2783980107 @default.
- W2318402017 hasRelatedWork W3002990455 @default.
- W2318402017 hasRelatedWork W3157384330 @default.
- W2318402017 hasRelatedWork W4250616939 @default.
- W2318402017 hasRelatedWork W4287996161 @default.
- W2318402017 hasRelatedWork W4312095940 @default.
- W2318402017 hasVolume "02" @default.
- W2318402017 isParatext "false" @default.
- W2318402017 isRetracted "false" @default.
- W2318402017 magId "2318402017" @default.
- W2318402017 workType "article" @default.