Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318482005> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2318482005 abstract "In this paper, a tentative of noise attenuation from the 3D Ground Penetrating Radar data (GPR) data using the Multilayer Perceptron neural network model is implanted. GPR data recorded in Algerian Sahara are filtered firstly using the discrete wavelet transform, after that a MLP machine with three layers is trained in a supervised learning mode, the input is an extracted profile from the raw 3D GPR data and the output consists of the GPR data of the same profile but after filtering. The estimated weights of connection are used to propagate the remaining non-filtered data through the implanted machine, the calculated output consists to the filtered GPR data. Comparison between the filtered data using the MLP machine and the continuous wavelet transform shows that the neural network machine can be used for S/N ratio improvement of the noisy GPR data. Introduction Ground Penetrating Radar (GPR) data processing using the wavelet transform has becoming a very interesting subject of research. Ouadfeul and Aliouane (2010) have published a paper that use the wavelet transform for identification of obstacles direction by the 3D GPR data using the wavelet transform. The analyzing wavelet is the Mexican Hat. The proposed method shows its robustness and useful in the 3D seismic design. Ouadfeul and Aliouane (2012) have shown the sensitivity of the wavelet transform to random noise and they have proposed to apply a filter to the 2D wavelet coefficients for small scales. In this paper, we propose another method to filter GPR data from random noise, it is based on the use of the neural network and discrete wavelet transform. Discrete wavelet transform and signal denoising . The function ) (t is said to be a wavelet if and only when the following condition is satisfied (Ouadfeul et al, 2012): 0 ) ( dt t The wavelet transform of a function ) 2 ( 2 ) ( R L t is defined by (Ouadfeul et al, 2012, Ouadfeul and Aliouane, 2013b) : ) ( * ) ( ) ( t a t f t f a " @default.
- W2318482005 created "2016-06-24" @default.
- W2318482005 creator A5002453570 @default.
- W2318482005 creator A5003406956 @default.
- W2318482005 date "2014-03-20" @default.
- W2318482005 modified "2023-09-25" @default.
- W2318482005 title "NOISE ATTENUATION FROM 3D GPR DATA USING ARTIFICIAL NEURAL NETWORK" @default.
- W2318482005 cites W106024889 @default.
- W2318482005 cites W2147095145 @default.
- W2318482005 doi "https://doi.org/10.1190/sageep.27-068" @default.
- W2318482005 hasPublicationYear "2014" @default.
- W2318482005 type Work @default.
- W2318482005 sameAs 2318482005 @default.
- W2318482005 citedByCount "1" @default.
- W2318482005 countsByYear W23184820052014 @default.
- W2318482005 crossrefType "proceedings-article" @default.
- W2318482005 hasAuthorship W2318482005A5002453570 @default.
- W2318482005 hasAuthorship W2318482005A5003406956 @default.
- W2318482005 hasConcept C115961682 @default.
- W2318482005 hasConcept C120665830 @default.
- W2318482005 hasConcept C121332964 @default.
- W2318482005 hasConcept C127162648 @default.
- W2318482005 hasConcept C154945302 @default.
- W2318482005 hasConcept C184652730 @default.
- W2318482005 hasConcept C24890656 @default.
- W2318482005 hasConcept C2780909371 @default.
- W2318482005 hasConcept C41008148 @default.
- W2318482005 hasConcept C47798520 @default.
- W2318482005 hasConcept C50644808 @default.
- W2318482005 hasConcept C554190296 @default.
- W2318482005 hasConcept C71813955 @default.
- W2318482005 hasConcept C76155785 @default.
- W2318482005 hasConcept C99498987 @default.
- W2318482005 hasConceptScore W2318482005C115961682 @default.
- W2318482005 hasConceptScore W2318482005C120665830 @default.
- W2318482005 hasConceptScore W2318482005C121332964 @default.
- W2318482005 hasConceptScore W2318482005C127162648 @default.
- W2318482005 hasConceptScore W2318482005C154945302 @default.
- W2318482005 hasConceptScore W2318482005C184652730 @default.
- W2318482005 hasConceptScore W2318482005C24890656 @default.
- W2318482005 hasConceptScore W2318482005C2780909371 @default.
- W2318482005 hasConceptScore W2318482005C41008148 @default.
- W2318482005 hasConceptScore W2318482005C47798520 @default.
- W2318482005 hasConceptScore W2318482005C50644808 @default.
- W2318482005 hasConceptScore W2318482005C554190296 @default.
- W2318482005 hasConceptScore W2318482005C71813955 @default.
- W2318482005 hasConceptScore W2318482005C76155785 @default.
- W2318482005 hasConceptScore W2318482005C99498987 @default.
- W2318482005 hasLocation W23184820051 @default.
- W2318482005 hasOpenAccess W2318482005 @default.
- W2318482005 hasPrimaryLocation W23184820051 @default.
- W2318482005 hasRelatedWork W1896898550 @default.
- W2318482005 hasRelatedWork W2045933190 @default.
- W2318482005 hasRelatedWork W2061035367 @default.
- W2318482005 hasRelatedWork W2079874862 @default.
- W2318482005 hasRelatedWork W2100975815 @default.
- W2318482005 hasRelatedWork W2117188741 @default.
- W2318482005 hasRelatedWork W2131929600 @default.
- W2318482005 hasRelatedWork W2357757996 @default.
- W2318482005 hasRelatedWork W2548754882 @default.
- W2318482005 hasRelatedWork W2950931974 @default.
- W2318482005 isParatext "false" @default.
- W2318482005 isRetracted "false" @default.
- W2318482005 magId "2318482005" @default.
- W2318482005 workType "article" @default.