Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318602020> ?p ?o ?g. }
- W2318602020 abstract "In the study of stochastic resonance, it is often mentioned that nonlinearity can enhance a weak signal embedded in noise. In order to give a systematic proof of the signal enhancement in nonlinear systems, we derive an optimal nonlinearity that maximizes a signal-to-noise ratio (SNR). The obtained optimal nonlinearity yields the maximum unbiased signal estimation performance, which is known in the context of information theory. It is found that a linear system is optimal for a Gaussian noise, but for a non-Gaussian noise, there exist nonlinear systems that can achieve an SNR higher than that obtained from linear systems. This analysis refers to a system subjected to an additive non-Gaussian noise with a small signal input." @default.
- W2318602020 created "2016-06-24" @default.
- W2318602020 creator A5042931306 @default.
- W2318602020 creator A5068152560 @default.
- W2318602020 date "2013-01-18" @default.
- W2318602020 modified "2023-09-25" @default.
- W2318602020 title "Relation between optimal nonlinearity and non-Gaussian noise: Enhancing a weak signal in a nonlinear system" @default.
- W2318602020 cites W1964652818 @default.
- W2318602020 cites W1984380587 @default.
- W2318602020 cites W1999160460 @default.
- W2318602020 cites W2010059103 @default.
- W2318602020 cites W2020999234 @default.
- W2318602020 cites W2029010014 @default.
- W2318602020 cites W2031256821 @default.
- W2318602020 cites W2036373484 @default.
- W2318602020 cites W2044843375 @default.
- W2318602020 cites W2059041601 @default.
- W2318602020 cites W2065424718 @default.
- W2318602020 cites W2066297336 @default.
- W2318602020 cites W2069904785 @default.
- W2318602020 cites W2078707738 @default.
- W2318602020 cites W2082489026 @default.
- W2318602020 cites W2083875149 @default.
- W2318602020 cites W2089932271 @default.
- W2318602020 cites W2095464859 @default.
- W2318602020 cites W2097752919 @default.
- W2318602020 cites W2105934661 @default.
- W2318602020 cites W2116967254 @default.
- W2318602020 cites W2118178838 @default.
- W2318602020 cites W2121325936 @default.
- W2318602020 cites W2131651138 @default.
- W2318602020 cites W2142575696 @default.
- W2318602020 cites W2142879316 @default.
- W2318602020 cites W2153501582 @default.
- W2318602020 cites W2158298975 @default.
- W2318602020 cites W2163610344 @default.
- W2318602020 cites W2296229624 @default.
- W2318602020 cites W2419392757 @default.
- W2318602020 cites W4211019631 @default.
- W2318602020 cites W4229557733 @default.
- W2318602020 cites W4300842605 @default.
- W2318602020 doi "https://doi.org/10.1103/physreve.87.012124" @default.
- W2318602020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23410300" @default.
- W2318602020 hasPublicationYear "2013" @default.
- W2318602020 type Work @default.
- W2318602020 sameAs 2318602020 @default.
- W2318602020 citedByCount "18" @default.
- W2318602020 countsByYear W23186020202013 @default.
- W2318602020 countsByYear W23186020202014 @default.
- W2318602020 countsByYear W23186020202015 @default.
- W2318602020 countsByYear W23186020202016 @default.
- W2318602020 countsByYear W23186020202017 @default.
- W2318602020 countsByYear W23186020202018 @default.
- W2318602020 countsByYear W23186020202019 @default.
- W2318602020 countsByYear W23186020202022 @default.
- W2318602020 crossrefType "journal-article" @default.
- W2318602020 hasAuthorship W2318602020A5042931306 @default.
- W2318602020 hasAuthorship W2318602020A5068152560 @default.
- W2318602020 hasConcept C105795698 @default.
- W2318602020 hasConcept C11413529 @default.
- W2318602020 hasConcept C115961682 @default.
- W2318602020 hasConcept C121332964 @default.
- W2318602020 hasConcept C121864883 @default.
- W2318602020 hasConcept C131021393 @default.
- W2318602020 hasConcept C13412647 @default.
- W2318602020 hasConcept C13944312 @default.
- W2318602020 hasConcept C151730666 @default.
- W2318602020 hasConcept C154945302 @default.
- W2318602020 hasConcept C158622935 @default.
- W2318602020 hasConcept C163716315 @default.
- W2318602020 hasConcept C18015164 @default.
- W2318602020 hasConcept C199360897 @default.
- W2318602020 hasConcept C207658827 @default.
- W2318602020 hasConcept C2775924081 @default.
- W2318602020 hasConcept C2779343474 @default.
- W2318602020 hasConcept C2779843651 @default.
- W2318602020 hasConcept C28826006 @default.
- W2318602020 hasConcept C33923547 @default.
- W2318602020 hasConcept C41008148 @default.
- W2318602020 hasConcept C4199805 @default.
- W2318602020 hasConcept C47446073 @default.
- W2318602020 hasConcept C62520636 @default.
- W2318602020 hasConcept C761482 @default.
- W2318602020 hasConcept C76155785 @default.
- W2318602020 hasConcept C86803240 @default.
- W2318602020 hasConcept C99498987 @default.
- W2318602020 hasConceptScore W2318602020C105795698 @default.
- W2318602020 hasConceptScore W2318602020C11413529 @default.
- W2318602020 hasConceptScore W2318602020C115961682 @default.
- W2318602020 hasConceptScore W2318602020C121332964 @default.
- W2318602020 hasConceptScore W2318602020C121864883 @default.
- W2318602020 hasConceptScore W2318602020C131021393 @default.
- W2318602020 hasConceptScore W2318602020C13412647 @default.
- W2318602020 hasConceptScore W2318602020C13944312 @default.
- W2318602020 hasConceptScore W2318602020C151730666 @default.
- W2318602020 hasConceptScore W2318602020C154945302 @default.
- W2318602020 hasConceptScore W2318602020C158622935 @default.
- W2318602020 hasConceptScore W2318602020C163716315 @default.
- W2318602020 hasConceptScore W2318602020C18015164 @default.
- W2318602020 hasConceptScore W2318602020C199360897 @default.