Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318621885> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2318621885 abstract "Modern and sustainable viticulture entails objective and fast monitoring of crucial variables for rational decision making. The development of new, non-invasive technologies in the last decade has enabled the acquisition of large amount of data from the vineyard, which need to be properly analysed to provide helpful information to viticulturists. In this context, data mining strategies may be applied to agricultural data, with the aim of yielding useful, reliable and objective information. This work presents the most recent applications of machine learning algorithms to grapevine plant phenotyping, specifically to variety discrimination, and assessment of plant water status. Support vector machine (SVM) and modified partial least squares (MPLS) models were built using NIR spectra acquired in the vineyard, on grapevine leaves, with a portable spectrophotometer working on the spectral range between 1600 to 2500 nm. Spectral measurements were acquired on the adaxial side of 200 individual leaves (20 leaves per cultivar) of ten (Vitis vinifera L.) varieties. Sequential minimal optimization (SMO) algorithm was used for the training of a SVM for varietal classification. The classifier’s performance for the 10 varieties surpassed the 94.9% mark. For water stress assessment, the predictive model based on MPLS using the reflectance spectra of four cultivars, and the first and second derivative, yielded a R2= 0.81 for stem water potential (ys), which is widely recognized as an integrative indicator of whole-vine water status, but destructive and very laborious. These results show the power of the combined use of data mining and non-invasive sensing for grapevine phenotyping and their usefulness for the wine industry." @default.
- W2318621885 created "2016-06-24" @default.
- W2318621885 creator A5000846829 @default.
- W2318621885 creator A5015899789 @default.
- W2318621885 creator A5040912395 @default.
- W2318621885 creator A5041268628 @default.
- W2318621885 date "2015-11-12" @default.
- W2318621885 modified "2023-09-25" @default.
- W2318621885 title "<strong>Data mining and non-invasive proximal sensing for precision viticulture</strong>" @default.
- W2318621885 cites W1092552458 @default.
- W2318621885 cites W1522139170 @default.
- W2318621885 cites W1964952733 @default.
- W2318621885 cites W1972476081 @default.
- W2318621885 cites W1973894950 @default.
- W2318621885 cites W2013227952 @default.
- W2318621885 cites W2023984950 @default.
- W2318621885 cites W2031735788 @default.
- W2318621885 cites W2035333912 @default.
- W2318621885 cites W2046982777 @default.
- W2318621885 cites W2050943841 @default.
- W2318621885 cites W2055563201 @default.
- W2318621885 cites W2105038653 @default.
- W2318621885 cites W2139034598 @default.
- W2318621885 cites W2143392008 @default.
- W2318621885 cites W2171705504 @default.
- W2318621885 cites W2413881769 @default.
- W2318621885 cites W586689322 @default.
- W2318621885 doi "https://doi.org/10.3390/ecsa-2-s2003" @default.
- W2318621885 hasPublicationYear "2015" @default.
- W2318621885 type Work @default.
- W2318621885 sameAs 2318621885 @default.
- W2318621885 citedByCount "1" @default.
- W2318621885 countsByYear W23186218852017 @default.
- W2318621885 crossrefType "proceedings-article" @default.
- W2318621885 hasAuthorship W2318621885A5000846829 @default.
- W2318621885 hasAuthorship W2318621885A5015899789 @default.
- W2318621885 hasAuthorship W2318621885A5040912395 @default.
- W2318621885 hasAuthorship W2318621885A5041268628 @default.
- W2318621885 hasBestOaLocation W23186218851 @default.
- W2318621885 hasConcept C119857082 @default.
- W2318621885 hasConcept C12267149 @default.
- W2318621885 hasConcept C124101348 @default.
- W2318621885 hasConcept C127413603 @default.
- W2318621885 hasConcept C144027150 @default.
- W2318621885 hasConcept C154945302 @default.
- W2318621885 hasConcept C166957645 @default.
- W2318621885 hasConcept C205649164 @default.
- W2318621885 hasConcept C2779343474 @default.
- W2318621885 hasConcept C2780924976 @default.
- W2318621885 hasConcept C41008148 @default.
- W2318621885 hasConcept C86803240 @default.
- W2318621885 hasConcept C88463610 @default.
- W2318621885 hasConceptScore W2318621885C119857082 @default.
- W2318621885 hasConceptScore W2318621885C12267149 @default.
- W2318621885 hasConceptScore W2318621885C124101348 @default.
- W2318621885 hasConceptScore W2318621885C127413603 @default.
- W2318621885 hasConceptScore W2318621885C144027150 @default.
- W2318621885 hasConceptScore W2318621885C154945302 @default.
- W2318621885 hasConceptScore W2318621885C166957645 @default.
- W2318621885 hasConceptScore W2318621885C205649164 @default.
- W2318621885 hasConceptScore W2318621885C2779343474 @default.
- W2318621885 hasConceptScore W2318621885C2780924976 @default.
- W2318621885 hasConceptScore W2318621885C41008148 @default.
- W2318621885 hasConceptScore W2318621885C86803240 @default.
- W2318621885 hasConceptScore W2318621885C88463610 @default.
- W2318621885 hasLocation W23186218851 @default.
- W2318621885 hasOpenAccess W2318621885 @default.
- W2318621885 hasPrimaryLocation W23186218851 @default.
- W2318621885 hasRelatedWork W1996541855 @default.
- W2318621885 hasRelatedWork W2101819884 @default.
- W2318621885 hasRelatedWork W2803710604 @default.
- W2318621885 hasRelatedWork W2937631562 @default.
- W2318621885 hasRelatedWork W2979979539 @default.
- W2318621885 hasRelatedWork W3127425528 @default.
- W2318621885 hasRelatedWork W3136979370 @default.
- W2318621885 hasRelatedWork W3194539120 @default.
- W2318621885 hasRelatedWork W3195168932 @default.
- W2318621885 hasRelatedWork W4361795583 @default.
- W2318621885 isParatext "false" @default.
- W2318621885 isRetracted "false" @default.
- W2318621885 magId "2318621885" @default.
- W2318621885 workType "article" @default.