Matches in SemOpenAlex for { <https://semopenalex.org/work/W2318804922> ?p ?o ?g. }
- W2318804922 endingPage "8" @default.
- W2318804922 startingPage "1" @default.
- W2318804922 abstract "So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis.The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by (1)H- NMR based metabolomics.This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease.The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis.The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients." @default.
- W2318804922 created "2016-06-24" @default.
- W2318804922 creator A5048705648 @default.
- W2318804922 creator A5056399499 @default.
- W2318804922 creator A5057693127 @default.
- W2318804922 creator A5059079738 @default.
- W2318804922 creator A5080315361 @default.
- W2318804922 creator A5081999622 @default.
- W2318804922 date "2016-01-01" @default.
- W2318804922 modified "2023-10-03" @default.
- W2318804922 title "1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis" @default.
- W2318804922 cites W1575712003 @default.
- W2318804922 cites W1751838780 @default.
- W2318804922 cites W1967642571 @default.
- W2318804922 cites W1968923085 @default.
- W2318804922 cites W1998817080 @default.
- W2318804922 cites W2007435247 @default.
- W2318804922 cites W2009562357 @default.
- W2318804922 cites W2013607204 @default.
- W2318804922 cites W2020643828 @default.
- W2318804922 cites W2040426678 @default.
- W2318804922 cites W2045074061 @default.
- W2318804922 cites W2051366884 @default.
- W2318804922 cites W2063028213 @default.
- W2318804922 cites W2065528753 @default.
- W2318804922 cites W2082494520 @default.
- W2318804922 cites W2116188060 @default.
- W2318804922 cites W2126913802 @default.
- W2318804922 cites W2137687977 @default.
- W2318804922 cites W2167064297 @default.
- W2318804922 cites W2256057208 @default.
- W2318804922 cites W2470889613 @default.
- W2318804922 cites W2607215535 @default.
- W2318804922 cites W4211081176 @default.
- W2318804922 doi "https://doi.org/10.29252/ijrm.14.1.1" @default.
- W2318804922 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4837922" @default.
- W2318804922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27141542" @default.
- W2318804922 hasPublicationYear "2016" @default.
- W2318804922 type Work @default.
- W2318804922 sameAs 2318804922 @default.
- W2318804922 citedByCount "25" @default.
- W2318804922 countsByYear W23188049222017 @default.
- W2318804922 countsByYear W23188049222018 @default.
- W2318804922 countsByYear W23188049222019 @default.
- W2318804922 countsByYear W23188049222020 @default.
- W2318804922 countsByYear W23188049222021 @default.
- W2318804922 countsByYear W23188049222022 @default.
- W2318804922 countsByYear W23188049222023 @default.
- W2318804922 crossrefType "journal-article" @default.
- W2318804922 hasAuthorship W2318804922A5048705648 @default.
- W2318804922 hasAuthorship W2318804922A5056399499 @default.
- W2318804922 hasAuthorship W2318804922A5057693127 @default.
- W2318804922 hasAuthorship W2318804922A5059079738 @default.
- W2318804922 hasAuthorship W2318804922A5080315361 @default.
- W2318804922 hasAuthorship W2318804922A5081999622 @default.
- W2318804922 hasBestOaLocation W23188049221 @default.
- W2318804922 hasConcept C119857082 @default.
- W2318804922 hasConcept C126322002 @default.
- W2318804922 hasConcept C126838900 @default.
- W2318804922 hasConcept C143409427 @default.
- W2318804922 hasConcept C154945302 @default.
- W2318804922 hasConcept C188816634 @default.
- W2318804922 hasConcept C2779522080 @default.
- W2318804922 hasConcept C41008148 @default.
- W2318804922 hasConcept C52620605 @default.
- W2318804922 hasConcept C71924100 @default.
- W2318804922 hasConcept C90924648 @default.
- W2318804922 hasConcept C95623464 @default.
- W2318804922 hasConceptScore W2318804922C119857082 @default.
- W2318804922 hasConceptScore W2318804922C126322002 @default.
- W2318804922 hasConceptScore W2318804922C126838900 @default.
- W2318804922 hasConceptScore W2318804922C143409427 @default.
- W2318804922 hasConceptScore W2318804922C154945302 @default.
- W2318804922 hasConceptScore W2318804922C188816634 @default.
- W2318804922 hasConceptScore W2318804922C2779522080 @default.
- W2318804922 hasConceptScore W2318804922C41008148 @default.
- W2318804922 hasConceptScore W2318804922C52620605 @default.
- W2318804922 hasConceptScore W2318804922C71924100 @default.
- W2318804922 hasConceptScore W2318804922C90924648 @default.
- W2318804922 hasConceptScore W2318804922C95623464 @default.
- W2318804922 hasIssue "1" @default.
- W2318804922 hasLocation W23188049221 @default.
- W2318804922 hasLocation W23188049222 @default.
- W2318804922 hasLocation W23188049223 @default.
- W2318804922 hasLocation W23188049224 @default.
- W2318804922 hasOpenAccess W2318804922 @default.
- W2318804922 hasPrimaryLocation W23188049221 @default.
- W2318804922 hasRelatedWork W1983547475 @default.
- W2318804922 hasRelatedWork W2101819884 @default.
- W2318804922 hasRelatedWork W2141170103 @default.
- W2318804922 hasRelatedWork W2356476264 @default.
- W2318804922 hasRelatedWork W2360993163 @default.
- W2318804922 hasRelatedWork W2363199080 @default.
- W2318804922 hasRelatedWork W2375032663 @default.
- W2318804922 hasRelatedWork W2383760906 @default.
- W2318804922 hasRelatedWork W2539163683 @default.
- W2318804922 hasRelatedWork W4320737025 @default.
- W2318804922 hasVolume "14" @default.