Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319007844> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2319007844 endingPage "685" @default.
- W2319007844 startingPage "685" @default.
- W2319007844 abstract "In order to summarize the contents of this paper it is necessary to use some of the definitions in [5]. These definitions are repeated below at the beginning of Section 1. Although this paper adds to the material in [5] we have attempted to reduce the number of references to [o] to a minimum. An approximate diagonal in a Banach algebra 31 is a bounded net {ma} in 31 a for all a in 31 in the norm topologies where 31? 31 is the usual projective tensor product [2] and -k is the continuous linear map 31?31->31 defined by ir(a?b) =ab. The net {m 31) ** with aM = Ma and ?r** (M) a = a for all a ? 31. In the algebraic cohomology of algebras the existence of an element m of A A with ma = am and ir(m) the identity of A is equivalent to the statement that H1(A, X) =0 for all 31 modules X almost never holds?in fact, in the commutative case for all A bimodules X. Among Banach algebras the statement jEP^S^X) =0 (see [3; Theorem 1] and [5; Proposition 8.1]) we can always find a Banach 31 module ? with S^1(3I,36)=t^O unless 31 zz?n. The existence of an approxi? mate diagonal is not unusual and is equivalent to the statement !M* (31,36*) = 0 for all Banach 31 modules X; thatis 31 is an emenable Banach algebra. The element M plays the same role in the theory of amenable tlgebras that the invariant mean does for amenable groups. The definitions used from [5] and the theorem connecting amenability with approximate diagonals are given in ? 1. In ? 2 we show that if 31 has a virtual diagonal with Ma? 31? St for all a in 3T then 913 (31, 3E) ? .0 for all Banach 31 modules 3?. Algebras satisfying this condition are grdup algebras of compact topological groups and the algebra c0 of convergent sequences of complex numbers. Although we do not prove it the result also applies to any annihilator B* algebra with only finite dimensional minimal ideals. In ? 3 we show that if 31 is a semi simple commutative amenable Banach algebra then there is a Banach 31 module X with 3/2(3I,3E) ^0, unless 31 is finite" @default.
- W2319007844 created "2016-06-24" @default.
- W2319007844 creator A5024612085 @default.
- W2319007844 date "1972-07-01" @default.
- W2319007844 modified "2023-09-24" @default.
- W2319007844 title "Approximate Diagonals and Cohomology of Certain Annihilator Banach Algebras" @default.
- W2319007844 cites W2051696925 @default.
- W2319007844 cites W2068046314 @default.
- W2319007844 cites W2109339080 @default.
- W2319007844 cites W2166453782 @default.
- W2319007844 cites W2329475961 @default.
- W2319007844 doi "https://doi.org/10.2307/2373751" @default.
- W2319007844 hasPublicationYear "1972" @default.
- W2319007844 type Work @default.
- W2319007844 sameAs 2319007844 @default.
- W2319007844 citedByCount "155" @default.
- W2319007844 countsByYear W23190078442012 @default.
- W2319007844 countsByYear W23190078442013 @default.
- W2319007844 countsByYear W23190078442014 @default.
- W2319007844 countsByYear W23190078442015 @default.
- W2319007844 countsByYear W23190078442016 @default.
- W2319007844 countsByYear W23190078442017 @default.
- W2319007844 countsByYear W23190078442018 @default.
- W2319007844 countsByYear W23190078442019 @default.
- W2319007844 countsByYear W23190078442020 @default.
- W2319007844 countsByYear W23190078442021 @default.
- W2319007844 countsByYear W23190078442022 @default.
- W2319007844 countsByYear W23190078442023 @default.
- W2319007844 crossrefType "journal-article" @default.
- W2319007844 hasAuthorship W2319007844A5024612085 @default.
- W2319007844 hasConcept C130367717 @default.
- W2319007844 hasConcept C136119220 @default.
- W2319007844 hasConcept C147073270 @default.
- W2319007844 hasConcept C202444582 @default.
- W2319007844 hasConcept C2524010 @default.
- W2319007844 hasConcept C33923547 @default.
- W2319007844 hasConcept C78606066 @default.
- W2319007844 hasConceptScore W2319007844C130367717 @default.
- W2319007844 hasConceptScore W2319007844C136119220 @default.
- W2319007844 hasConceptScore W2319007844C147073270 @default.
- W2319007844 hasConceptScore W2319007844C202444582 @default.
- W2319007844 hasConceptScore W2319007844C2524010 @default.
- W2319007844 hasConceptScore W2319007844C33923547 @default.
- W2319007844 hasConceptScore W2319007844C78606066 @default.
- W2319007844 hasIssue "3" @default.
- W2319007844 hasLocation W23190078441 @default.
- W2319007844 hasOpenAccess W2319007844 @default.
- W2319007844 hasPrimaryLocation W23190078441 @default.
- W2319007844 hasRelatedWork W1972112806 @default.
- W2319007844 hasRelatedWork W1982456117 @default.
- W2319007844 hasRelatedWork W2013653492 @default.
- W2319007844 hasRelatedWork W2022975509 @default.
- W2319007844 hasRelatedWork W2056663089 @default.
- W2319007844 hasRelatedWork W2087734572 @default.
- W2319007844 hasRelatedWork W2137375302 @default.
- W2319007844 hasRelatedWork W2320881711 @default.
- W2319007844 hasRelatedWork W3046926816 @default.
- W2319007844 hasRelatedWork W776536739 @default.
- W2319007844 hasVolume "94" @default.
- W2319007844 isParatext "false" @default.
- W2319007844 isRetracted "false" @default.
- W2319007844 magId "2319007844" @default.
- W2319007844 workType "article" @default.