Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319047854> ?p ?o ?g. }
- W2319047854 endingPage "3937" @default.
- W2319047854 startingPage "3926" @default.
- W2319047854 abstract "Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) alkanes family referred to as C16CnC16, where n=2, 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, qpDNA−, a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of qDNA−=−2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, α, of the lipid mixture, and the effective charge ratio of the lipoplex, ρeff, the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEMand SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of ∼2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The α and ρeff values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n=2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent. Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n=2, 3) than those with the long spacer (n=5, 12)." @default.
- W2319047854 created "2016-06-24" @default.
- W2319047854 creator A5000191796 @default.
- W2319047854 creator A5018760782 @default.
- W2319047854 creator A5020978468 @default.
- W2319047854 creator A5028153148 @default.
- W2319047854 creator A5034270585 @default.
- W2319047854 creator A5035062175 @default.
- W2319047854 creator A5042699027 @default.
- W2319047854 creator A5074115476 @default.
- W2319047854 creator A5083564301 @default.
- W2319047854 creator A5090701117 @default.
- W2319047854 date "2012-11-16" @default.
- W2319047854 modified "2023-10-03" @default.
- W2319047854 title "How Does the Spacer Length of Cationic Gemini Lipids Influence the Lipoplex Formation with Plasmid DNA? Physicochemical and Biochemical Characterizations and their Relevance in Gene Therapy" @default.
- W2319047854 cites W1499514203 @default.
- W2319047854 cites W1509724628 @default.
- W2319047854 cites W1601642700 @default.
- W2319047854 cites W1964424337 @default.
- W2319047854 cites W1965789209 @default.
- W2319047854 cites W1965868925 @default.
- W2319047854 cites W1971741270 @default.
- W2319047854 cites W1975552511 @default.
- W2319047854 cites W1978180388 @default.
- W2319047854 cites W1983125961 @default.
- W2319047854 cites W1984650338 @default.
- W2319047854 cites W1988752768 @default.
- W2319047854 cites W1990617401 @default.
- W2319047854 cites W2000130544 @default.
- W2319047854 cites W2008900010 @default.
- W2319047854 cites W2015674508 @default.
- W2319047854 cites W2019033608 @default.
- W2319047854 cites W2024361708 @default.
- W2319047854 cites W2027050448 @default.
- W2319047854 cites W2033515337 @default.
- W2319047854 cites W2039468697 @default.
- W2319047854 cites W2042487849 @default.
- W2319047854 cites W2045101135 @default.
- W2319047854 cites W2049854598 @default.
- W2319047854 cites W2057395225 @default.
- W2319047854 cites W2070896318 @default.
- W2319047854 cites W2071798099 @default.
- W2319047854 cites W2076637677 @default.
- W2319047854 cites W2079120866 @default.
- W2319047854 cites W2079968019 @default.
- W2319047854 cites W2081023652 @default.
- W2319047854 cites W2091799875 @default.
- W2319047854 cites W2092386113 @default.
- W2319047854 cites W2092674732 @default.
- W2319047854 cites W2102037304 @default.
- W2319047854 cites W2103972113 @default.
- W2319047854 cites W2105822696 @default.
- W2319047854 cites W2105875393 @default.
- W2319047854 cites W2106048944 @default.
- W2319047854 cites W2109900316 @default.
- W2319047854 cites W2136462695 @default.
- W2319047854 cites W2149182742 @default.
- W2319047854 cites W2165652738 @default.
- W2319047854 cites W2165790671 @default.
- W2319047854 cites W2170533808 @default.
- W2319047854 cites W2049772747 @default.
- W2319047854 doi "https://doi.org/10.1021/bm301066w" @default.
- W2319047854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23130552" @default.
- W2319047854 hasPublicationYear "2012" @default.
- W2319047854 type Work @default.
- W2319047854 sameAs 2319047854 @default.
- W2319047854 citedByCount "87" @default.
- W2319047854 countsByYear W23190478542013 @default.
- W2319047854 countsByYear W23190478542014 @default.
- W2319047854 countsByYear W23190478542015 @default.
- W2319047854 countsByYear W23190478542016 @default.
- W2319047854 countsByYear W23190478542017 @default.
- W2319047854 countsByYear W23190478542018 @default.
- W2319047854 countsByYear W23190478542019 @default.
- W2319047854 countsByYear W23190478542020 @default.
- W2319047854 countsByYear W23190478542021 @default.
- W2319047854 countsByYear W23190478542022 @default.
- W2319047854 countsByYear W23190478542023 @default.
- W2319047854 crossrefType "journal-article" @default.
- W2319047854 hasAuthorship W2319047854A5000191796 @default.
- W2319047854 hasAuthorship W2319047854A5018760782 @default.
- W2319047854 hasAuthorship W2319047854A5020978468 @default.
- W2319047854 hasAuthorship W2319047854A5028153148 @default.
- W2319047854 hasAuthorship W2319047854A5034270585 @default.
- W2319047854 hasAuthorship W2319047854A5035062175 @default.
- W2319047854 hasAuthorship W2319047854A5042699027 @default.
- W2319047854 hasAuthorship W2319047854A5074115476 @default.
- W2319047854 hasAuthorship W2319047854A5083564301 @default.
- W2319047854 hasAuthorship W2319047854A5090701117 @default.
- W2319047854 hasConcept C104317684 @default.
- W2319047854 hasConcept C120665830 @default.
- W2319047854 hasConcept C121332964 @default.
- W2319047854 hasConcept C12554922 @default.
- W2319047854 hasConcept C127413603 @default.
- W2319047854 hasConcept C131888329 @default.
- W2319047854 hasConcept C135983454 @default.
- W2319047854 hasConcept C145148216 @default.
- W2319047854 hasConcept C155672457 @default.