Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319310942> ?p ?o ?g. }
- W2319310942 endingPage "8679" @default.
- W2319310942 startingPage "8671" @default.
- W2319310942 abstract "The electronic structure and vibronic coupling in two similar molecular systems, radical C3H3 and anion C3H3–, in ground and excited states, are investigated in detail to show how their equilibrium structures, in deviation from the Born–Oppenheimer approximation, originate from the vibronic mixing of at least two electronic states, producing the Jahn–Teller (JT), pseudo JT (PJT), and hidden PJT effects. Starting with the high-symmetry geometry D3h of C3H3, we evaluated its 2-fold degenerate ground electronic state 2E″ and two lowest excited states 2A1′ and 2E′ and found that all of them contribute to the distortion of the ground state via the JT vibronic coupling problem E″ ⊗ e′ and two PJT problems (E″ + A1′) ⊗ e″ and (E″ + E′) ⊗ (a2″ + e″); all the three active normal modes e′(1335 cm–1), e″(1030 cm–1), and a2″(778 cm–1) are imaginary, meaning that all the three vibronic couplings are sufficiently strong to cause instability, albeit in different directions. The first of them, the ground state JT effect, enhances one of the C–C bonds (toward an ethylenic form with C2v symmetry), while the two PJT effects produce, respectively, cis (a2″ toward C3v symmetry) and trans (e″) puckering of the hydrogen atoms. As a result, C3H3 has two coexisting equilibrium configurations with different geometry. In the C3H3– anion, the ground electronic state in D3h symmetry is an orbitally nondegenerate spin triplet 3A2′ with a group of close in energy singlet and triplet excited states in the order of 1A1′, 3A1″, 1E″, 3E″, and 1E′. This shows that two PJT couplings, (3A2′ + 3A1″) ⊗ a2″ and (3A2′ + 3E″) ⊗ e″, may influence the geometry of the equilibrium structure in the 3A2′ state. Indeed, both vibrational modes, a2″(1034 cm–1) and e″(1284 cm–1), are imaginary in this state. Similar to the radical case, they produce, respectively, cis (a2″) and trans (e″) puckering of the hydrogen atoms, but no e′ distortion of the basic C3 triangle; the equilibrium configuration with Cs symmetry occurs along the stronger e″ distortions. Another higher-in-energy triplet-state minimum with C2v symmetry emerges as a result of a strong JTE in the excited 3E″ electronic state. In addition to these APES minima with spin-triplet electronic states, the system has a coexisting minimum with a spin-singlet electronic state, which is shown to be due to the hidden PJT effect that couples two singlet excited states. The two lowest equilibrium configurations of the C3H3– anion with different geometry and spin realize a (common to all electronic e2 configurations) magnetic and structural bistability accompanied by a spin crossover. Some general spectroscopic consequences are also noted. As a whole, this article is intended to demonstrate the efficiency of the vibronic coupling approach in rationalizing the origin of complicated structural features of molecular systems as due to a combination of nonadiabatic JT effects." @default.
- W2319310942 created "2016-06-24" @default.
- W2319310942 creator A5029841786 @default.
- W2319310942 creator A5039775126 @default.
- W2319310942 creator A5053054105 @default.
- W2319310942 creator A5078587306 @default.
- W2319310942 date "2013-08-06" @default.
- W2319310942 modified "2023-10-03" @default.
- W2319310942 title "Deviations from Born–Oppenheimer Theory in Structural Chemistry: Jahn–Teller, Pseudo Jahn–Teller, and Hidden Pseudo Jahn–Teller Effects in C<sub>3</sub>H<sub>3</sub> and C<sub>3</sub>H<sub>3</sub><sup>–</sup>" @default.
- W2319310942 cites W1571658817 @default.
- W2319310942 cites W1987292259 @default.
- W2319310942 cites W2020797246 @default.
- W2319310942 cites W2021143023 @default.
- W2319310942 cites W2038355562 @default.
- W2319310942 cites W2038922877 @default.
- W2319310942 cites W2044952136 @default.
- W2319310942 cites W2050911473 @default.
- W2319310942 cites W2053147962 @default.
- W2319310942 cites W2057878842 @default.
- W2319310942 cites W2066513700 @default.
- W2319310942 cites W2069006374 @default.
- W2319310942 cites W2069344060 @default.
- W2319310942 cites W2073753594 @default.
- W2319310942 cites W2082345944 @default.
- W2319310942 cites W2082584265 @default.
- W2319310942 cites W2090115518 @default.
- W2319310942 cites W2090267784 @default.
- W2319310942 cites W2146406469 @default.
- W2319310942 cites W2151752974 @default.
- W2319310942 cites W2234551698 @default.
- W2319310942 cites W2312764173 @default.
- W2319310942 cites W4244515728 @default.
- W2319310942 cites W4256260662 @default.
- W2319310942 cites W2079965795 @default.
- W2319310942 doi "https://doi.org/10.1021/jp403034c" @default.
- W2319310942 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23901786" @default.
- W2319310942 hasPublicationYear "2013" @default.
- W2319310942 type Work @default.
- W2319310942 sameAs 2319310942 @default.
- W2319310942 citedByCount "16" @default.
- W2319310942 countsByYear W23193109422015 @default.
- W2319310942 countsByYear W23193109422016 @default.
- W2319310942 countsByYear W23193109422018 @default.
- W2319310942 countsByYear W23193109422019 @default.
- W2319310942 countsByYear W23193109422020 @default.
- W2319310942 countsByYear W23193109422021 @default.
- W2319310942 countsByYear W23193109422022 @default.
- W2319310942 countsByYear W23193109422023 @default.
- W2319310942 crossrefType "journal-article" @default.
- W2319310942 hasAuthorship W2319310942A5029841786 @default.
- W2319310942 hasAuthorship W2319310942A5039775126 @default.
- W2319310942 hasAuthorship W2319310942A5053054105 @default.
- W2319310942 hasAuthorship W2319310942A5078587306 @default.
- W2319310942 hasConcept C121332964 @default.
- W2319310942 hasConcept C145148216 @default.
- W2319310942 hasConcept C147597530 @default.
- W2319310942 hasConcept C160172526 @default.
- W2319310942 hasConcept C178790620 @default.
- W2319310942 hasConcept C181500209 @default.
- W2319310942 hasConcept C184779094 @default.
- W2319310942 hasConcept C185592680 @default.
- W2319310942 hasConcept C32909587 @default.
- W2319310942 hasConcept C33062035 @default.
- W2319310942 hasConcept C36556920 @default.
- W2319310942 hasConcept C41999313 @default.
- W2319310942 hasConcept C62520636 @default.
- W2319310942 hasConcept C69523127 @default.
- W2319310942 hasConcept C72319582 @default.
- W2319310942 hasConcept C83981384 @default.
- W2319310942 hasConcept C86025842 @default.
- W2319310942 hasConceptScore W2319310942C121332964 @default.
- W2319310942 hasConceptScore W2319310942C145148216 @default.
- W2319310942 hasConceptScore W2319310942C147597530 @default.
- W2319310942 hasConceptScore W2319310942C160172526 @default.
- W2319310942 hasConceptScore W2319310942C178790620 @default.
- W2319310942 hasConceptScore W2319310942C181500209 @default.
- W2319310942 hasConceptScore W2319310942C184779094 @default.
- W2319310942 hasConceptScore W2319310942C185592680 @default.
- W2319310942 hasConceptScore W2319310942C32909587 @default.
- W2319310942 hasConceptScore W2319310942C33062035 @default.
- W2319310942 hasConceptScore W2319310942C36556920 @default.
- W2319310942 hasConceptScore W2319310942C41999313 @default.
- W2319310942 hasConceptScore W2319310942C62520636 @default.
- W2319310942 hasConceptScore W2319310942C69523127 @default.
- W2319310942 hasConceptScore W2319310942C72319582 @default.
- W2319310942 hasConceptScore W2319310942C83981384 @default.
- W2319310942 hasConceptScore W2319310942C86025842 @default.
- W2319310942 hasIssue "36" @default.
- W2319310942 hasLocation W23193109421 @default.
- W2319310942 hasLocation W23193109422 @default.
- W2319310942 hasOpenAccess W2319310942 @default.
- W2319310942 hasPrimaryLocation W23193109421 @default.
- W2319310942 hasRelatedWork W1964135744 @default.
- W2319310942 hasRelatedWork W1968480822 @default.
- W2319310942 hasRelatedWork W1996942703 @default.
- W2319310942 hasRelatedWork W2037317771 @default.
- W2319310942 hasRelatedWork W2043098348 @default.
- W2319310942 hasRelatedWork W2047717615 @default.