Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319314103> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2319314103 abstract "Event Abstract Back to Event A layered description language for spiking neural network modeling Chung-Chuan Lo1* 1 National Tsing Hua University , Institute of Bioinformatics and Structural Biology, Taiwan The neural modeling has a long history in the development of modern neuroscience and has greatly enhanced our understanding in principles of neural activity and interactions between neurons. However, as a rapidly growing field, the neural network modeling has reached a level of complexity which makes the exchange of information between research groups extremely difficult. It also becomes more and more unlikely that the modeling results obtained in one lab be exactly reproduced in another lab which uses a different simulator. The problem arises from the fact that the field of computational neuroscience is lacking appropriate standards to communicate network models. To address this issue, the International Neuroinformatics Coordinating Facility (INCF) has initiated a project: Network Interchange for Neuroscience Modeling Language, or NineML, which provides a standardized machine-readable language for spiking neural network models with an aim to ease model sharing and to facilitate the replication of results across different simulators. In the talk I will introduce the first version of NineML. Its most innovated features includes: 1. Layered: The complete description of a neural network model in NineML is separated into to a user layer and an abstraction layer. The XML-based user layer provides a syntax to specify the instantiation and parameterization of a network model in biological terms. The abstraction layer provides explicitly descriptions of the core concepts, mathematics, model variables and state update rules. 2. Fully self-consistent: All model concepts defined in the user layer are expressed explicitly in the abstraction layer so that a neural network model can be unambiguously implemented by software that fully supports NineML. 3. Highly expandable: future expansions are taken into account in the development of NineML. Hence specific model features that are not supported in the current version of NineML can be easily added in a later version without any major revision to the specification of the language. In the talk I will also demonstrate NineML using several example models of neural networks. I will show how the description looks like in different layers and how NineML solves some difficult problems. Using NineML, researchers can describe their neural network models in an unambiguous and simulator-independent way. Furthermore, the models can be reimplemented and simulation results can be easily reproduced by any simulator which fully supports NineML. We believe that this project will have a profound effect on the modeling community and will facilitate research in computational neuroscience. Conference: Neuroinformatics 2010 , Kobe, Japan, 30 Aug - 1 Sep, 2010. Presentation Type: Oral Presentation Topic: Workshop 1: How to describe a model: description language solutions and challenges Citation: Lo C (2010). A layered description language for spiking neural network modeling. Front. Neurosci. Conference Abstract: Neuroinformatics 2010 . doi: 10.3389/conf.fnins.2010.13.00001 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 08 Jun 2010; Published Online: 08 Jun 2010. * Correspondence: Chung-Chuan Lo, National Tsing Hua University, Institute of Bioinformatics and Structural Biology, Hsinchu City, Taiwan, cclo@life.nthu.edu.tw Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Chung-Chuan Lo Google Chung-Chuan Lo Google Scholar Chung-Chuan Lo PubMed Chung-Chuan Lo Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page." @default.
- W2319314103 created "2016-06-24" @default.
- W2319314103 creator A5055566039 @default.
- W2319314103 date "2010-01-01" @default.
- W2319314103 modified "2023-10-18" @default.
- W2319314103 title "A layered description language for spiking neural network modeling" @default.
- W2319314103 doi "https://doi.org/10.3389/conf.fnins.2010.13.00001" @default.
- W2319314103 hasPublicationYear "2010" @default.
- W2319314103 type Work @default.
- W2319314103 sameAs 2319314103 @default.
- W2319314103 citedByCount "0" @default.
- W2319314103 crossrefType "journal-article" @default.
- W2319314103 hasAuthorship W2319314103A5055566039 @default.
- W2319314103 hasBestOaLocation W23193141031 @default.
- W2319314103 hasConcept C111472728 @default.
- W2319314103 hasConcept C11731999 @default.
- W2319314103 hasConcept C121332964 @default.
- W2319314103 hasConcept C124304363 @default.
- W2319314103 hasConcept C138885662 @default.
- W2319314103 hasConcept C147168706 @default.
- W2319314103 hasConcept C15286952 @default.
- W2319314103 hasConcept C154945302 @default.
- W2319314103 hasConcept C173079777 @default.
- W2319314103 hasConcept C177973122 @default.
- W2319314103 hasConcept C178790620 @default.
- W2319314103 hasConcept C179603123 @default.
- W2319314103 hasConcept C185592680 @default.
- W2319314103 hasConcept C199360897 @default.
- W2319314103 hasConcept C202444582 @default.
- W2319314103 hasConcept C205427263 @default.
- W2319314103 hasConcept C2522767166 @default.
- W2319314103 hasConcept C2777904410 @default.
- W2319314103 hasConcept C2779227376 @default.
- W2319314103 hasConcept C2779662365 @default.
- W2319314103 hasConcept C33923547 @default.
- W2319314103 hasConcept C41008148 @default.
- W2319314103 hasConcept C50644808 @default.
- W2319314103 hasConcept C60048249 @default.
- W2319314103 hasConcept C62520636 @default.
- W2319314103 hasConcept C9652623 @default.
- W2319314103 hasConceptScore W2319314103C111472728 @default.
- W2319314103 hasConceptScore W2319314103C11731999 @default.
- W2319314103 hasConceptScore W2319314103C121332964 @default.
- W2319314103 hasConceptScore W2319314103C124304363 @default.
- W2319314103 hasConceptScore W2319314103C138885662 @default.
- W2319314103 hasConceptScore W2319314103C147168706 @default.
- W2319314103 hasConceptScore W2319314103C15286952 @default.
- W2319314103 hasConceptScore W2319314103C154945302 @default.
- W2319314103 hasConceptScore W2319314103C173079777 @default.
- W2319314103 hasConceptScore W2319314103C177973122 @default.
- W2319314103 hasConceptScore W2319314103C178790620 @default.
- W2319314103 hasConceptScore W2319314103C179603123 @default.
- W2319314103 hasConceptScore W2319314103C185592680 @default.
- W2319314103 hasConceptScore W2319314103C199360897 @default.
- W2319314103 hasConceptScore W2319314103C202444582 @default.
- W2319314103 hasConceptScore W2319314103C205427263 @default.
- W2319314103 hasConceptScore W2319314103C2522767166 @default.
- W2319314103 hasConceptScore W2319314103C2777904410 @default.
- W2319314103 hasConceptScore W2319314103C2779227376 @default.
- W2319314103 hasConceptScore W2319314103C2779662365 @default.
- W2319314103 hasConceptScore W2319314103C33923547 @default.
- W2319314103 hasConceptScore W2319314103C41008148 @default.
- W2319314103 hasConceptScore W2319314103C50644808 @default.
- W2319314103 hasConceptScore W2319314103C60048249 @default.
- W2319314103 hasConceptScore W2319314103C62520636 @default.
- W2319314103 hasConceptScore W2319314103C9652623 @default.
- W2319314103 hasLocation W23193141031 @default.
- W2319314103 hasOpenAccess W2319314103 @default.
- W2319314103 hasPrimaryLocation W23193141031 @default.
- W2319314103 hasRelatedWork W1497095139 @default.
- W2319314103 hasRelatedWork W2386387936 @default.
- W2319314103 hasRelatedWork W2624764041 @default.
- W2319314103 hasRelatedWork W2950022897 @default.
- W2319314103 hasRelatedWork W3088617914 @default.
- W2319314103 hasRelatedWork W3116331683 @default.
- W2319314103 hasRelatedWork W3177279640 @default.
- W2319314103 hasRelatedWork W4317438634 @default.
- W2319314103 hasRelatedWork W1629725936 @default.
- W2319314103 hasRelatedWork W2785809018 @default.
- W2319314103 hasVolume "4" @default.
- W2319314103 isParatext "false" @default.
- W2319314103 isRetracted "false" @default.
- W2319314103 magId "2319314103" @default.
- W2319314103 workType "article" @default.