Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319319550> ?p ?o ?g. }
- W2319319550 endingPage "70" @default.
- W2319319550 startingPage "56" @default.
- W2319319550 abstract "Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use Analysis K-SVD to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing." @default.
- W2319319550 created "2016-06-24" @default.
- W2319319550 creator A5029632774 @default.
- W2319319550 creator A5045490312 @default.
- W2319319550 creator A5051489979 @default.
- W2319319550 creator A5060762919 @default.
- W2319319550 date "2016-06-01" @default.
- W2319319550 modified "2023-09-27" @default.
- W2319319550 title "Medical image registration using sparse coding of image patches" @default.
- W2319319550 cites W1874027545 @default.
- W2319319550 cites W1947430577 @default.
- W2319319550 cites W1963623641 @default.
- W2319319550 cites W1974581420 @default.
- W2319319550 cites W1977863850 @default.
- W2319319550 cites W1982080133 @default.
- W2319319550 cites W1994281301 @default.
- W2319319550 cites W2003672514 @default.
- W2319319550 cites W2004537679 @default.
- W2319319550 cites W2010419371 @default.
- W2319319550 cites W2029275935 @default.
- W2319319550 cites W2056091393 @default.
- W2319319550 cites W2059477850 @default.
- W2319319550 cites W2061572659 @default.
- W2319319550 cites W2063237661 @default.
- W2319319550 cites W2065319605 @default.
- W2319319550 cites W2070367049 @default.
- W2319319550 cites W2071730188 @default.
- W2319319550 cites W2076400752 @default.
- W2319319550 cites W2090518410 @default.
- W2319319550 cites W2097184811 @default.
- W2319319550 cites W2100068253 @default.
- W2319319550 cites W2103122668 @default.
- W2319319550 cites W2113576511 @default.
- W2319319550 cites W2115167851 @default.
- W2319319550 cites W2123464668 @default.
- W2319319550 cites W2126511344 @default.
- W2319319550 cites W2131696871 @default.
- W2319319550 cites W2133287637 @default.
- W2319319550 cites W2139540805 @default.
- W2319319550 cites W2140139548 @default.
- W2319319550 cites W2141633169 @default.
- W2319319550 cites W2143667750 @default.
- W2319319550 cites W2146168286 @default.
- W2319319550 cites W2147555557 @default.
- W2319319550 cites W2149027517 @default.
- W2319319550 cites W2156593994 @default.
- W2319319550 cites W2157656099 @default.
- W2319319550 cites W2159212388 @default.
- W2319319550 cites W2160547390 @default.
- W2319319550 cites W2168745297 @default.
- W2319319550 cites W2171272565 @default.
- W2319319550 cites W2206609956 @default.
- W2319319550 cites W2217359989 @default.
- W2319319550 cites W2283717164 @default.
- W2319319550 cites W3125735862 @default.
- W2319319550 cites W4250374586 @default.
- W2319319550 doi "https://doi.org/10.1016/j.compbiomed.2016.03.022" @default.
- W2319319550 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27085311" @default.
- W2319319550 hasPublicationYear "2016" @default.
- W2319319550 type Work @default.
- W2319319550 sameAs 2319319550 @default.
- W2319319550 citedByCount "11" @default.
- W2319319550 countsByYear W23193195502017 @default.
- W2319319550 countsByYear W23193195502018 @default.
- W2319319550 countsByYear W23193195502021 @default.
- W2319319550 countsByYear W23193195502022 @default.
- W2319319550 countsByYear W23193195502023 @default.
- W2319319550 crossrefType "journal-article" @default.
- W2319319550 hasAuthorship W2319319550A5029632774 @default.
- W2319319550 hasAuthorship W2319319550A5045490312 @default.
- W2319319550 hasAuthorship W2319319550A5051489979 @default.
- W2319319550 hasAuthorship W2319319550A5060762919 @default.
- W2319319550 hasConcept C103278499 @default.
- W2319319550 hasConcept C104317684 @default.
- W2319319550 hasConcept C115961682 @default.
- W2319319550 hasConcept C126780896 @default.
- W2319319550 hasConcept C153180895 @default.
- W2319319550 hasConcept C154945302 @default.
- W2319319550 hasConcept C166704113 @default.
- W2319319550 hasConcept C185592680 @default.
- W2319319550 hasConcept C194257627 @default.
- W2319319550 hasConcept C204241405 @default.
- W2319319550 hasConcept C2776257435 @default.
- W2319319550 hasConcept C2776517306 @default.
- W2319319550 hasConcept C31258907 @default.
- W2319319550 hasConcept C31972630 @default.
- W2319319550 hasConcept C34736171 @default.
- W2319319550 hasConcept C41008148 @default.
- W2319319550 hasConcept C55493867 @default.
- W2319319550 hasConcept C77637269 @default.
- W2319319550 hasConceptScore W2319319550C103278499 @default.
- W2319319550 hasConceptScore W2319319550C104317684 @default.
- W2319319550 hasConceptScore W2319319550C115961682 @default.
- W2319319550 hasConceptScore W2319319550C126780896 @default.
- W2319319550 hasConceptScore W2319319550C153180895 @default.
- W2319319550 hasConceptScore W2319319550C154945302 @default.
- W2319319550 hasConceptScore W2319319550C166704113 @default.
- W2319319550 hasConceptScore W2319319550C185592680 @default.