Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319463669> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2319463669 abstract "Event Abstract Back to Event Injectable hyaluronic acid bionanocomposite hydrogels: from biomaterial development to biological performance outcomes Rui M. Domingues1, 2, Marta Silva1, 2, Pavel Gershovich1, 2, Stefano Betta3, 4, Pedro Babo1, 2, Sofia G. Caridade1, 2, João F. Mano1, 2, Antonella Motta3, 4, Rui L. Reis1, 2 and Manuela E. Gomes1, 2 1 University of Minho, 3B’s Research Group, Portugal 2 ICVS/3B's-PT Associate Laboratory, Portugal 3 University of Trento, Department of Industrial Engineering and Biotech Research Centre, Italy 4 European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Italy Introduction: Injectable hyaluronic acid (HA) hydrogels have been increasingly applied in tissue engineering (TE) envisioning minimal invasive approaches. However, traditional HA hydrogels lack structural integrity that makes them less competitive in strategies where good mechanical properties are required. Here we propose the use of cellulose nanocrystals (CNCs), the nature “carbon nanotubes”, as nanofillers and crosslinkers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels[1]. Due to their distinct mechanical properties, biocompatibility and excellent aqueous colloidal stability, CNCs are being increasingly considered in hydrogel development targeting biomedical applications[2]. We hypothesise that besides structural reinforcement, in TE strategies the CNC’s surface SO3- groups may also potentially act as semisynthetic mimicry of ECM sulfated glycosaminoglycans, which are known to induce and control specific cell functions on the cellular microenvironment through interactions with soluble biomolecules, e.g. proteins, growth factors (GFs)[3]. Materials and Methods: In situ crosslinkable and injectable hydrogels were prepared based on hydrazone coupling of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA), reinforced with aldehyde-modified CNCs (a-CNCs) (Figure 1). The hydrogel precursors were fully characterized by several spectroscopic, chromatographic, and imaging techniques, and the hydrogels were characterized in terms of internal morphology, mechanical properties, swelling and degradation behaviour in the presence of hyaluronidase. The biological performance of the developed nanocomposites was assessed towards human adipose derived stem cells (hASCs). Figure 1. Schematic representation of the nanocomposite hydrogels production, characterization and biological performance evaluation. Adapted with permission from ref. [1]. Copyright 2015 American Chemical Society. Results and Discussion: The incorporation of a-CNCs in the hydrogel’s network had a remarkable impact over the physical and biological performance of the injectable biomaterial. Nanocomposite hydrogels showed improved microstructure and mechanical properties (increased E’ up to 2.7-fold compared to unfilled hydrogels), lower equilibrium swelling ratios and higher resistance to bulk hyaluronidase degradation. HA-CNCs exhibited preferential cell supportive properties in in vitro culture conditions, in both surface cell seeding and cell encapsulation tests. Particularly, hASCs encapsulated in HA-CNCs hydrogels demonstrated ability to spread within the volume of gels and exhibited pronounced proliferative activity. This impact over cell’s behaviour is correlated with the higher structural integrity of the hydrogel matrix and potential interaction of soluble microenvironmental cues with the CNC’s surface sulphate groups. Conclusions: The proposed strategy demonstrated to be a valuable approach for fine tuning the structural, biomechanical and biochemical properties of injectable HA hydrogels. The combined effects of enhanced stability and mechanical properties with the incorporation of mimetic ECM biochemical cues in HA-CNCs hydrogels, proved to positively impact their biological performance for TE applications. Considering the promising outcomes, we are currently exploring the potential of the developed system when combined with discrete GFs or the GFs pool from platelet lysates in specific TE strategies. The authors acknowledge the financial support from the Project RL1 - ABMR - NORTE-01-0124-FEDER-000016 cofinanced by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)References:[1] Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, et al. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications. Bioconjugate Chemistry. 2015;26:1571–81.[2] Domingues RMA, Gomes ME, Reis RL. The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules. 2014;15:2327-46.[3] Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530-41. Keywords: Hydrogel, nanocomposite, mechanical property, matrix-cell interaction Conference: 10th World Biomaterials Congress, Montréal, Canada, 17 May - 22 May, 2016. Presentation Type: New Frontier Oral Topic: Synthetic scaffolds as extracellular matrices Citation: Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL and Gomes ME (2016). Injectable hyaluronic acid bionanocomposite hydrogels: from biomaterial development to biological performance outcomes. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. doi: 10.3389/conf.FBIOE.2016.01.01964 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 27 Mar 2016; Published Online: 30 Mar 2016. Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Rui M Domingues Marta Silva Pavel Gershovich Stefano Betta Pedro Babo Sofia G Caridade João F Mano Antonella Motta Rui L Reis Manuela E Gomes Google Rui M Domingues Marta Silva Pavel Gershovich Stefano Betta Pedro Babo Sofia G Caridade João F Mano Antonella Motta Rui L Reis Manuela E Gomes Google Scholar Rui M Domingues Marta Silva Pavel Gershovich Stefano Betta Pedro Babo Sofia G Caridade João F Mano Antonella Motta Rui L Reis Manuela E Gomes PubMed Rui M Domingues Marta Silva Pavel Gershovich Stefano Betta Pedro Babo Sofia G Caridade João F Mano Antonella Motta Rui L Reis Manuela E Gomes Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page." @default.
- W2319463669 created "2016-06-24" @default.
- W2319463669 creator A5018479674 @default.
- W2319463669 creator A5022501323 @default.
- W2319463669 creator A5042714826 @default.
- W2319463669 creator A5049433541 @default.
- W2319463669 creator A5058464909 @default.
- W2319463669 creator A5081499203 @default.
- W2319463669 creator A5082965168 @default.
- W2319463669 creator A5084119119 @default.
- W2319463669 creator A5087935017 @default.
- W2319463669 creator A5090113734 @default.
- W2319463669 date "2016-01-01" @default.
- W2319463669 modified "2023-10-18" @default.
- W2319463669 title "Injectable hyaluronic acid bionanocomposite hydrogels: from biomaterial development to biological performance outcomes" @default.
- W2319463669 cites W1941585788 @default.
- W2319463669 cites W2054833822 @default.
- W2319463669 cites W771020872 @default.
- W2319463669 doi "https://doi.org/10.3389/conf.fbioe.2016.01.01964" @default.
- W2319463669 hasPublicationYear "2016" @default.
- W2319463669 type Work @default.
- W2319463669 sameAs 2319463669 @default.
- W2319463669 citedByCount "0" @default.
- W2319463669 crossrefType "journal-article" @default.
- W2319463669 hasAuthorship W2319463669A5018479674 @default.
- W2319463669 hasAuthorship W2319463669A5022501323 @default.
- W2319463669 hasAuthorship W2319463669A5042714826 @default.
- W2319463669 hasAuthorship W2319463669A5049433541 @default.
- W2319463669 hasAuthorship W2319463669A5058464909 @default.
- W2319463669 hasAuthorship W2319463669A5081499203 @default.
- W2319463669 hasAuthorship W2319463669A5082965168 @default.
- W2319463669 hasAuthorship W2319463669A5084119119 @default.
- W2319463669 hasAuthorship W2319463669A5087935017 @default.
- W2319463669 hasAuthorship W2319463669A5090113734 @default.
- W2319463669 hasBestOaLocation W23194636691 @default.
- W2319463669 hasConcept C105702510 @default.
- W2319463669 hasConcept C108586683 @default.
- W2319463669 hasConcept C136229726 @default.
- W2319463669 hasConcept C171250308 @default.
- W2319463669 hasConcept C185592680 @default.
- W2319463669 hasConcept C188027245 @default.
- W2319463669 hasConcept C192562407 @default.
- W2319463669 hasConcept C2777529286 @default.
- W2319463669 hasConcept C2778414984 @default.
- W2319463669 hasConcept C71924100 @default.
- W2319463669 hasConceptScore W2319463669C105702510 @default.
- W2319463669 hasConceptScore W2319463669C108586683 @default.
- W2319463669 hasConceptScore W2319463669C136229726 @default.
- W2319463669 hasConceptScore W2319463669C171250308 @default.
- W2319463669 hasConceptScore W2319463669C185592680 @default.
- W2319463669 hasConceptScore W2319463669C188027245 @default.
- W2319463669 hasConceptScore W2319463669C192562407 @default.
- W2319463669 hasConceptScore W2319463669C2777529286 @default.
- W2319463669 hasConceptScore W2319463669C2778414984 @default.
- W2319463669 hasConceptScore W2319463669C71924100 @default.
- W2319463669 hasLocation W23194636691 @default.
- W2319463669 hasLocation W23194636692 @default.
- W2319463669 hasOpenAccess W2319463669 @default.
- W2319463669 hasPrimaryLocation W23194636691 @default.
- W2319463669 hasRelatedWork W1638917040 @default.
- W2319463669 hasRelatedWork W2011183759 @default.
- W2319463669 hasRelatedWork W2057429157 @default.
- W2319463669 hasRelatedWork W2757580580 @default.
- W2319463669 hasRelatedWork W2995556360 @default.
- W2319463669 hasRelatedWork W2997580128 @default.
- W2319463669 hasRelatedWork W4220681422 @default.
- W2319463669 hasRelatedWork W4225878252 @default.
- W2319463669 hasRelatedWork W4243470199 @default.
- W2319463669 hasRelatedWork W4367174070 @default.
- W2319463669 hasVolume "4" @default.
- W2319463669 isParatext "false" @default.
- W2319463669 isRetracted "false" @default.
- W2319463669 magId "2319463669" @default.
- W2319463669 workType "article" @default.