Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319487944> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2319487944 abstract "Applying the original raw data to machine learning will bring in a poor performance, because so many features are not necessary and redundant. Extracting a small number of good features will be an important issue, and it can be solved by using dimensionality reduction techniques. However, the popular dimensionality reduction method will suffer from the eigen-decomposition of dense matrix problem which is expensive in memory and time. We adopt unsupervised (unlabeled) spectral regression method for dimensionality reduction, which well avoids the problem of dense matrix eigen-decomposition problem and can be applied on large scale data sets. Histograms of Oriented Gradients (HOG) are robust features which not only well characterize the local shape and appearance but also show a certain degree of local optical and geometry invariance. In order to characterize the local shape and appearance better, we extract a three-tier pyramid HOG descriptor vector for one sample. Then we adopt the unsupervised spectral regression method for dimensionality reduction on these descriptor vectors. Our algorithm can be applied in the library entrance guard system of university and other research fields. Several experiments on well-known face databases have shown good performance and good invariance against illumination, occlusion and local deformation, etc." @default.
- W2319487944 created "2016-06-24" @default.
- W2319487944 creator A5083014172 @default.
- W2319487944 date "2015-06-01" @default.
- W2319487944 modified "2023-09-24" @default.
- W2319487944 title "Unsupervised Spectral Regression Learning for Pyramid HOG" @default.
- W2319487944 cites W1480376833 @default.
- W2319487944 cites W1554944419 @default.
- W2319487944 cites W1578099820 @default.
- W2319487944 cites W1586776267 @default.
- W2319487944 cites W2089322632 @default.
- W2319487944 cites W2161969291 @default.
- W2319487944 cites W2286850569 @default.
- W2319487944 doi "https://doi.org/10.3993/jfbi03201511" @default.
- W2319487944 hasPublicationYear "2015" @default.
- W2319487944 type Work @default.
- W2319487944 sameAs 2319487944 @default.
- W2319487944 citedByCount "1" @default.
- W2319487944 countsByYear W23194879442016 @default.
- W2319487944 crossrefType "journal-article" @default.
- W2319487944 hasAuthorship W2319487944A5083014172 @default.
- W2319487944 hasBestOaLocation W23194879441 @default.
- W2319487944 hasConcept C111030470 @default.
- W2319487944 hasConcept C115961682 @default.
- W2319487944 hasConcept C121332964 @default.
- W2319487944 hasConcept C142575187 @default.
- W2319487944 hasConcept C153180895 @default.
- W2319487944 hasConcept C154945302 @default.
- W2319487944 hasConcept C158693339 @default.
- W2319487944 hasConcept C2524010 @default.
- W2319487944 hasConcept C27438332 @default.
- W2319487944 hasConcept C33923547 @default.
- W2319487944 hasConcept C41008148 @default.
- W2319487944 hasConcept C42355184 @default.
- W2319487944 hasConcept C53533937 @default.
- W2319487944 hasConcept C62520636 @default.
- W2319487944 hasConcept C70518039 @default.
- W2319487944 hasConceptScore W2319487944C111030470 @default.
- W2319487944 hasConceptScore W2319487944C115961682 @default.
- W2319487944 hasConceptScore W2319487944C121332964 @default.
- W2319487944 hasConceptScore W2319487944C142575187 @default.
- W2319487944 hasConceptScore W2319487944C153180895 @default.
- W2319487944 hasConceptScore W2319487944C154945302 @default.
- W2319487944 hasConceptScore W2319487944C158693339 @default.
- W2319487944 hasConceptScore W2319487944C2524010 @default.
- W2319487944 hasConceptScore W2319487944C27438332 @default.
- W2319487944 hasConceptScore W2319487944C33923547 @default.
- W2319487944 hasConceptScore W2319487944C41008148 @default.
- W2319487944 hasConceptScore W2319487944C42355184 @default.
- W2319487944 hasConceptScore W2319487944C53533937 @default.
- W2319487944 hasConceptScore W2319487944C62520636 @default.
- W2319487944 hasConceptScore W2319487944C70518039 @default.
- W2319487944 hasLocation W23194879441 @default.
- W2319487944 hasOpenAccess W2319487944 @default.
- W2319487944 hasPrimaryLocation W23194879441 @default.
- W2319487944 hasRelatedWork W1526441029 @default.
- W2319487944 hasRelatedWork W175256437 @default.
- W2319487944 hasRelatedWork W1976662267 @default.
- W2319487944 hasRelatedWork W1997388938 @default.
- W2319487944 hasRelatedWork W2074776253 @default.
- W2319487944 hasRelatedWork W2514862016 @default.
- W2319487944 hasRelatedWork W2567621815 @default.
- W2319487944 hasRelatedWork W2734930952 @default.
- W2319487944 hasRelatedWork W2763929596 @default.
- W2319487944 hasRelatedWork W2799725576 @default.
- W2319487944 hasRelatedWork W2925005147 @default.
- W2319487944 hasRelatedWork W2955487948 @default.
- W2319487944 hasRelatedWork W2964237354 @default.
- W2319487944 hasRelatedWork W3013185732 @default.
- W2319487944 hasRelatedWork W3115636726 @default.
- W2319487944 hasRelatedWork W3117333078 @default.
- W2319487944 hasRelatedWork W3198927741 @default.
- W2319487944 hasRelatedWork W3206089627 @default.
- W2319487944 hasRelatedWork W59791712 @default.
- W2319487944 hasRelatedWork W880740833 @default.
- W2319487944 isParatext "false" @default.
- W2319487944 isRetracted "false" @default.
- W2319487944 magId "2319487944" @default.
- W2319487944 workType "article" @default.