Matches in SemOpenAlex for { <https://semopenalex.org/work/W2319668974> ?p ?o ?g. }
- W2319668974 endingPage "215" @default.
- W2319668974 startingPage "207" @default.
- W2319668974 abstract "Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. [ J Nurs Educ. 2014;53(4):207–215.]" @default.
- W2319668974 created "2016-06-24" @default.
- W2319668974 creator A5036405830 @default.
- W2319668974 creator A5086060000 @default.
- W2319668974 date "2014-04-01" @default.
- W2319668974 modified "2023-10-16" @default.
- W2319668974 title "Understanding Poisson Regression" @default.
- W2319668974 cites W1894821576 @default.
- W2319668974 cites W1968697330 @default.
- W2319668974 cites W1970130501 @default.
- W2319668974 cites W1971550126 @default.
- W2319668974 cites W1977097723 @default.
- W2319668974 cites W1980201796 @default.
- W2319668974 cites W1997234724 @default.
- W2319668974 cites W2000445173 @default.
- W2319668974 cites W2006130059 @default.
- W2319668974 cites W2014428813 @default.
- W2319668974 cites W2017011691 @default.
- W2319668974 cites W2050046102 @default.
- W2319668974 cites W2051740042 @default.
- W2319668974 cites W2053657286 @default.
- W2319668974 cites W2057553517 @default.
- W2319668974 cites W2059875753 @default.
- W2319668974 cites W2062655118 @default.
- W2319668974 cites W2070025643 @default.
- W2319668974 cites W2071162509 @default.
- W2319668974 cites W2076342268 @default.
- W2319668974 cites W2084321827 @default.
- W2319668974 cites W2089763487 @default.
- W2319668974 cites W2093803711 @default.
- W2319668974 cites W2102810005 @default.
- W2319668974 cites W2109096757 @default.
- W2319668974 cites W2119634512 @default.
- W2319668974 cites W2120536812 @default.
- W2319668974 cites W2121024352 @default.
- W2319668974 cites W2130321856 @default.
- W2319668974 cites W2133992176 @default.
- W2319668974 cites W2142635246 @default.
- W2319668974 cites W2153847909 @default.
- W2319668974 cites W2172241123 @default.
- W2319668974 cites W4301861531 @default.
- W2319668974 doi "https://doi.org/10.3928/01484834-20140325-04" @default.
- W2319668974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24654593" @default.
- W2319668974 hasPublicationYear "2014" @default.
- W2319668974 type Work @default.
- W2319668974 sameAs 2319668974 @default.
- W2319668974 citedByCount "62" @default.
- W2319668974 countsByYear W23196689742014 @default.
- W2319668974 countsByYear W23196689742015 @default.
- W2319668974 countsByYear W23196689742016 @default.
- W2319668974 countsByYear W23196689742017 @default.
- W2319668974 countsByYear W23196689742018 @default.
- W2319668974 countsByYear W23196689742019 @default.
- W2319668974 countsByYear W23196689742020 @default.
- W2319668974 countsByYear W23196689742021 @default.
- W2319668974 countsByYear W23196689742022 @default.
- W2319668974 countsByYear W23196689742023 @default.
- W2319668974 crossrefType "journal-article" @default.
- W2319668974 hasAuthorship W2319668974A5036405830 @default.
- W2319668974 hasAuthorship W2319668974A5086060000 @default.
- W2319668974 hasConcept C100906024 @default.
- W2319668974 hasConcept C105795698 @default.
- W2319668974 hasConcept C117236510 @default.
- W2319668974 hasConcept C149782125 @default.
- W2319668974 hasConcept C152877465 @default.
- W2319668974 hasConcept C178174526 @default.
- W2319668974 hasConcept C199335787 @default.
- W2319668974 hasConcept C2908647359 @default.
- W2319668974 hasConcept C33643355 @default.
- W2319668974 hasConcept C33923547 @default.
- W2319668974 hasConcept C41008148 @default.
- W2319668974 hasConcept C41054675 @default.
- W2319668974 hasConcept C71924100 @default.
- W2319668974 hasConcept C73269764 @default.
- W2319668974 hasConcept C83546350 @default.
- W2319668974 hasConcept C88721176 @default.
- W2319668974 hasConcept C91025261 @default.
- W2319668974 hasConcept C99454951 @default.
- W2319668974 hasConceptScore W2319668974C100906024 @default.
- W2319668974 hasConceptScore W2319668974C105795698 @default.
- W2319668974 hasConceptScore W2319668974C117236510 @default.
- W2319668974 hasConceptScore W2319668974C149782125 @default.
- W2319668974 hasConceptScore W2319668974C152877465 @default.
- W2319668974 hasConceptScore W2319668974C178174526 @default.
- W2319668974 hasConceptScore W2319668974C199335787 @default.
- W2319668974 hasConceptScore W2319668974C2908647359 @default.
- W2319668974 hasConceptScore W2319668974C33643355 @default.
- W2319668974 hasConceptScore W2319668974C33923547 @default.
- W2319668974 hasConceptScore W2319668974C41008148 @default.
- W2319668974 hasConceptScore W2319668974C41054675 @default.
- W2319668974 hasConceptScore W2319668974C71924100 @default.
- W2319668974 hasConceptScore W2319668974C73269764 @default.
- W2319668974 hasConceptScore W2319668974C83546350 @default.
- W2319668974 hasConceptScore W2319668974C88721176 @default.
- W2319668974 hasConceptScore W2319668974C91025261 @default.
- W2319668974 hasConceptScore W2319668974C99454951 @default.
- W2319668974 hasIssue "4" @default.
- W2319668974 hasLocation W23196689741 @default.