Matches in SemOpenAlex for { <https://semopenalex.org/work/W2320074967> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2320074967 endingPage "355" @default.
- W2320074967 startingPage "350" @default.
- W2320074967 abstract "Medical data mining has great potential for exploring the hidden patterns in the data sets of the medical domain. These patterns can be utilized for the classification of various diseases. Data mining technology provides a user-oriented approach to novel and hidden patterns in the data. The present study consisted of records of 746 patients collected from ADRC, ISTAART, USA. Around eight hundred and ninety patients were recruited to ADRC and diagnosed for Alzheimer's disease (65%), vascular dementia (38%) and Parkinson's disease (40%), according to the established criteria. In our study we concentrated particularly on the major risk factors which are responsible for Alzheimer's disease, vascular dementia and Parkinson's disease. This paper proposes a new model for the classification of Alzheimer's disease, vascular disease and Parkinson's disease by considering the most influencing risk factors. The main focus was on the selection of most influencing risk factors for both AD and PD using various attribute evaluation scheme with ranker search method. Different models for the classification of AD, VD and PD using various classification techniques such as Neural Networks (NN) and Machine Learning (ML) methods were also developed. It is observed that increase in the vascular risk factors increases the risk of Alzheimer's disease. It was found that some specific genetic factors, diabetes, age and smoking were the strongest risk factors for Alzheimer's disease. Similarly, for the classification of Parkinson's disease, the risk factors such as stroke, diabetes, genes and age were the vital factors." @default.
- W2320074967 created "2016-06-24" @default.
- W2320074967 creator A5016896799 @default.
- W2320074967 creator A5063162310 @default.
- W2320074967 creator A5063420681 @default.
- W2320074967 creator A5067392303 @default.
- W2320074967 creator A5084242868 @default.
- W2320074967 date "2010-01-01" @default.
- W2320074967 modified "2023-09-26" @default.
- W2320074967 title "Classification of Neurodegenerative Disorders Based on Major Risk Factors Employing Machine Learning Techniques" @default.
- W2320074967 cites W1570448133 @default.
- W2320074967 cites W1597405158 @default.
- W2320074967 cites W1984044273 @default.
- W2320074967 cites W1984737558 @default.
- W2320074967 cites W2057042201 @default.
- W2320074967 cites W2067034692 @default.
- W2320074967 cites W2073478479 @default.
- W2320074967 cites W2074249519 @default.
- W2320074967 cites W2088642279 @default.
- W2320074967 cites W2090221075 @default.
- W2320074967 cites W2099556509 @default.
- W2320074967 cites W2113173732 @default.
- W2320074967 cites W2125055259 @default.
- W2320074967 cites W2125993125 @default.
- W2320074967 cites W2134886133 @default.
- W2320074967 cites W2138482871 @default.
- W2320074967 cites W2140190241 @default.
- W2320074967 cites W2140812062 @default.
- W2320074967 cites W2140937253 @default.
- W2320074967 cites W2149284026 @default.
- W2320074967 cites W2152907424 @default.
- W2320074967 cites W2153669770 @default.
- W2320074967 cites W2154088208 @default.
- W2320074967 cites W2156220037 @default.
- W2320074967 cites W2156561805 @default.
- W2320074967 cites W2157339323 @default.
- W2320074967 cites W2158169582 @default.
- W2320074967 cites W2165024054 @default.
- W2320074967 cites W79050534 @default.
- W2320074967 doi "https://doi.org/10.7763/ijet.2010.v2.146" @default.
- W2320074967 hasPublicationYear "2010" @default.
- W2320074967 type Work @default.
- W2320074967 sameAs 2320074967 @default.
- W2320074967 citedByCount "16" @default.
- W2320074967 countsByYear W23200749672013 @default.
- W2320074967 countsByYear W23200749672016 @default.
- W2320074967 countsByYear W23200749672017 @default.
- W2320074967 countsByYear W23200749672018 @default.
- W2320074967 countsByYear W23200749672019 @default.
- W2320074967 countsByYear W23200749672020 @default.
- W2320074967 countsByYear W23200749672021 @default.
- W2320074967 countsByYear W23200749672022 @default.
- W2320074967 crossrefType "journal-article" @default.
- W2320074967 hasAuthorship W2320074967A5016896799 @default.
- W2320074967 hasAuthorship W2320074967A5063162310 @default.
- W2320074967 hasAuthorship W2320074967A5063420681 @default.
- W2320074967 hasAuthorship W2320074967A5067392303 @default.
- W2320074967 hasAuthorship W2320074967A5084242868 @default.
- W2320074967 hasConcept C119857082 @default.
- W2320074967 hasConcept C154945302 @default.
- W2320074967 hasConcept C15744967 @default.
- W2320074967 hasConcept C169760540 @default.
- W2320074967 hasConcept C41008148 @default.
- W2320074967 hasConcept C71924100 @default.
- W2320074967 hasConceptScore W2320074967C119857082 @default.
- W2320074967 hasConceptScore W2320074967C154945302 @default.
- W2320074967 hasConceptScore W2320074967C15744967 @default.
- W2320074967 hasConceptScore W2320074967C169760540 @default.
- W2320074967 hasConceptScore W2320074967C41008148 @default.
- W2320074967 hasConceptScore W2320074967C71924100 @default.
- W2320074967 hasIssue "4" @default.
- W2320074967 hasLocation W23200749671 @default.
- W2320074967 hasOpenAccess W2320074967 @default.
- W2320074967 hasPrimaryLocation W23200749671 @default.
- W2320074967 hasRelatedWork W2748952813 @default.
- W2320074967 hasRelatedWork W2899084033 @default.
- W2320074967 hasRelatedWork W2961085424 @default.
- W2320074967 hasRelatedWork W3046775127 @default.
- W2320074967 hasRelatedWork W4205958290 @default.
- W2320074967 hasRelatedWork W4285260836 @default.
- W2320074967 hasRelatedWork W4286629047 @default.
- W2320074967 hasRelatedWork W4306321456 @default.
- W2320074967 hasRelatedWork W4306674287 @default.
- W2320074967 hasRelatedWork W4224009465 @default.
- W2320074967 hasVolume "2" @default.
- W2320074967 isParatext "false" @default.
- W2320074967 isRetracted "false" @default.
- W2320074967 magId "2320074967" @default.
- W2320074967 workType "article" @default.